Skip to main content
Log in

Liquid–Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The liquid–solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid–solid interaction occur, including solid-state diffusion, uniform clad–core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad–core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M.M. Schwartz: Brazing, ASM International, Materials Park, Ohio, USA, 1987.

    Google Scholar 

  2. G. Humpston and D.M. Jacobson: Principle of Soldering and Brazing, ASM international, Materials Park, Ohio, USA, 1991.

    Google Scholar 

  3. R. Woods: CAB Brazing Metallurgy, 12th Annual International Invitational Aluminum Brazing Seminar, AFC Holcroft, Novi, Michigan, USA, 2007.

  4. M.P. Groover: Fundamentals of Modern Manufacturing: Materials Processes and Systems, John Wiley & Sons, Hoboken, New Jersey, USA, 2007.

    Google Scholar 

  5. J. Liu: SAE Technical Paper 960244, 1996.

  6. M.J. Fletcher: Vacuum brazing, Mills and Boon Limited, London, 1971.

    Google Scholar 

  7. B.E. Cheadle and K.F. Dockus: SAE Technical Paper 880446, 1988.

  8. D.J. Schmatz: Weld J. Research Supplement, 1983, pp. 267–72.

  9. G.J. Marshall, R.K. Bolingbroke and A. Gray: Metall. Trans., 1993, vol. 24A, pp. 1935-1942.

    Article  Google Scholar 

  10. M. Nylén, U. Gustavsson, B. Hutchinson and A. Örtnäs: Mater. Sci. Forum, 1996, vol. 217-222, pp. 1703-1708.

    Article  Google Scholar 

  11. M. Nylén, U. Gustavsson, B. Hutchinson and A. Örtnäs: Mater. Sci. Forum, 2000, vol. 331-337, pp. 1737-1742.

    Article  Google Scholar 

  12. S.D. Meijers: Corrosion of aluminium brazing sheet, Ph.D. Thesis, Delft University of Technology, 2002.

  13. A.J. Wittebrood, S. Desikan, R. Boom and L. Katgerman: Mater. Sci. Forum, 2006, vol. 519-521, pp. 1151-1156.

    Article  Google Scholar 

  14. A. Wittebrood: Microstructural changes in brazing sheet due to sold-liquid interaction, Ph.D. Thesis, Delft University of Technology, 2009.

  15. H.S. Yang and R.A. Woods: SAE Paper 971849, 1987.

  16. A. Fukumoto and T. Doko: Proceedings of 9th International Conference on Aluminium Alloys, 2004, pp. 319–24.

  17. J.S. Ryu, M.S. Kim and D. Jung: J. Mater. Proc. Tech., 2002, vol. 130-131, pp. 240-244.

    Article  Google Scholar 

  18. R.A. Woods: SAE Paper 971848, 1987.

  19. H. Jin, J. Liang, Y. Zeng and M.S. Kozdras: SAE Int. J. Mater. Manf., 2015, vol. 8(3), pp. 736-743.

    Article  Google Scholar 

  20. S-I. Fujikawa, K-I. Hirano and Y. Fukushima: Metall. Trans., 1978, vol. A9, pp. 1811-1815.

    Article  Google Scholar 

  21. N.D.A. Kooij, T.J. Hurd, A. Burger, K. Vieregge and A. Haszler: VTMS 4 Conference Proceedings, London, U.K., SAE Paper C543:014:99, 1999.

  22. M.J. Benoit, M.A. Wells, M.A. Whitney, H. Jin and S. Winkler: Metall. Mater. Trans., 2017, vol. 48A, pp. 4645-4654.

    Article  Google Scholar 

  23. M. Benoit, R. Kaur, M.A. Wells, H. Jin, B. S. Amirkhiz and S. Winkler: J. Mater. Proc. Tech., 2018, vol. 254, pp. 353-360.

    Article  Google Scholar 

  24. M. Gündüz and J.D. Hunt: Acta Metall., 1985, vol. 33, pp. 1651-1672.

    Article  Google Scholar 

  25. A.R. Miedema, F.J.A. den Broeder: Z. Metallkd, 1979, vol. 70, pp. 14-20.

    Google Scholar 

  26. M. Gündüz and J.D. Hunt: Acta Metall. Mater., 1989, vol. 37, pp. 1839-1845.

    Article  Google Scholar 

  27. B. Straumal, T. Muschik, W. Gust and P. Predel: Acta Metall. Mater., 1992, vol. 40, pp. 939-945.

    Article  Google Scholar 

  28. D.R. Clarke and M.L. Gee: Materials Interfaces, ed. D. Wolf and S. Yip, Chapman & Hall, London, 1992, p. 255.

  29. D. Chatain, E. Rabkin, J. Derenne and J. Berdardini: Acta Mater., 2001, vol. 49, pp. 1123-1128.

    Article  Google Scholar 

  30. Y. Brechet and G.R. Purgy: Script. Metall., 1988, vol. 22, pp. 1629-1633.

    Article  Google Scholar 

  31. D.Y. Yoon: Int. Mater. Reviews, 1995, vol. 40, pp. 149-179.

    Article  Google Scholar 

  32. E. Rabkin: Script. Mater., 1998, vol. 39, pp. 685-900.

    Article  Google Scholar 

  33. M. Hillert: Script. Metall., 1983, vol. 17, pp. 237-240.

    Article  Google Scholar 

  34. M. Kuo and R.A. Fournelle: Acta Metall. Mater., 1991, vol. 39, pp. 2835-2845.

    Article  Google Scholar 

  35. D.J. Lloyd: Metall. Trans., 1980, vol. 11A, pp. 1287-1294.

    Article  Google Scholar 

  36. Ø. Ryen, O. Nijs, E. Sjölander, B. Holmerdal, H-E. Ekström and E. Nes: Metall. Mater. Trans., 2006, vol. 37A, pp. 1999-2006.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Natural Resources Canada and Dana Canada Corporation through Program of Energy Research and Development. The ingot casting and roll-bonding were done by Alcereco in Kingston, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jin.

Additional information

Manuscript submitted January 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Kozdras, M.S., Amirkhiz, B.S. et al. Liquid–Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties. Metall Mater Trans A 49, 3091–3107 (2018). https://doi.org/10.1007/s11661-018-4670-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4670-8

Navigation