Skip to main content
Log in

Effects of Solid Solution Treatments on the Microstructure and Mechanical Properties of a Nanoscale Precipitate-Strengthened Ferritic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solid solution treatment (SST) and age hardening are the two main treatments used to produce nanoscale precipitation-strengthened steels. In this work, solution treatment and aging are employed to develop a nanoscale precipitation-strengthened steel displaying high degrees of strength, ductility, and toughness. The effects of SST on the microstructure and mechanical properties of the produced steel are investigated. The results show that the solution temperature strongly influences the matrix microstructure. Partial austenitization between \( A_{{{\text{c}}1}} \) and \( A_{{{\text{c}}3}} \) favors the formation of granular ferrite, while complete austenitization above \( A_{{{\text{c}}3}} \) leads to the formation of polygonal ferrite. Refined granular ferrite with a low dislocation density can effectively improve the plasticity and low-temperature toughness of steel. Precipitation strengthening is mainly related to the nature of the nano-precipitates, specifically their size and number density, independently of the matrix microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Vaynman, M.E. Fine, S. Lee, and H.D. Espinosa: Scripta Mater., 2006, vol. 55, pp. 351-354.

    Article  Google Scholar 

  2. Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba, and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 7726-7740.

    Article  Google Scholar 

  3. D. Isheim, M.S. Gagliano, M.E. Fine, and D.N. Seidman: Acta Mater., 2006, vol. 54, pp. 841-849.

    Article  Google Scholar 

  4. Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, and C.T. Liu: Acta Mater., 2013, vol. 61 (16), pp. 5996-6005.

    Article  Google Scholar 

  5. Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen, and B.A. Chin: Metall. Mater. Trans. A, 2012, vol. 43, pp. 351-359.

    Article  Google Scholar 

  6. S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, and M.E. Fine: Metall. Mater. Trans. A, 2008, vol. 39, pp. 363-373.

    Article  Google Scholar 

  7. Y. Zhao, S.S. Xu, J.P. Li, J. Zhang, L.W. Sun, L. Chen, G.A. Sun, S.M. Peng, and Z.W. Zhang: Mater. Sci. Eng. A, 2017, vol. 691, pp. 162-167.

    Article  Google Scholar 

  8. M. Kapoor, D. Isheim, S. Vaynman, M.E. Fine, and Y.W. Chung: Acta Mater., 2016, vol. 104, pp. 166-171.

    Article  Google Scholar 

  9. D. Jain, D. Isheim, A.H. Hunter, and D.N. Seidman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1-13.

    Google Scholar 

  10. M.J. Alinger, G.R. Odette, and D.T. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392-406.

    Article  Google Scholar 

  11. Z.K. Teng, C.T. Liu, G. Ghosh, P.K. Liaw, and M.E. Fine: Intermetallics, 2010, vol. 18, pp. 1437-1443.

    Article  Google Scholar 

  12. A. Ghosh, S. Sahoo, M. Ghosh, R. Ghosh, and D. Chakrabarti: Mater. Sci. Eng. A, 2014, vol. 613, pp. 37-47.

    Article  Google Scholar 

  13. Z.W. Zhang, C.T. Liu, S. Guo, J.L. Cheng, G. Chen, T. Fujita, M.W. Chen, Y.W. Chung, S. Vaynman, and M.E. Fine: Mater. Sci. Eng. A, 2011, vol. 528, pp. 855-859.

    Article  Google Scholar 

  14. M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, and Y.W. Chung: Acta Mate., 2014, vol. 73, pp. 56-74.

    Article  Google Scholar 

  15. A. Urakami, and M.E. Fine: Scripta Metal., 1970, vol. 4, pp. 667-671.

    Article  Google Scholar 

  16. Y.R. Wen, A. Hirata, Z.W. Zhang, T. Fujita, C.T. Liu, J.H. Jiang, and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 2133-2147.

    Article  Google Scholar 

  17. J. Weertman: Phys. Rev., 1956, vol. 101, pp. 1429-1430.

    Article  Google Scholar 

  18. L. Tan, T.S. Byun, Y. Katoh, and L.L. Snead: Acta Mater., 2014, vol. 71, pp. 11-19.

    Article  Google Scholar 

  19. Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, and C.T. Liu: Acta Mater., 2015, vol. 84, pp. 283-291.

    Article  Google Scholar 

  20. D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127-158.

    Article  Google Scholar 

  21. M.A. Suarez, M.A. Alvarez-Pérez, O. Alvarez-Fregoso, and J.A. Juarez-Islas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4924-4926.

    Article  Google Scholar 

  22. S.W. Thompson: Mater. Charact., 2013, vol. 77, pp. 89-98.

    Article  Google Scholar 

  23. Z.W. Zhang, C.T. Liu, X.L. Wang, K. Littrell, M.K. Miller, K. An, B. Chin: Phys. Rev. B, 2011, vol. 84, pp. 5324-5326.

    Google Scholar 

  24. Q.Wu, D.L. Sun, and C.S. Liu, J. Mater. Eng. Perform., 2009, vol. 18, pp. 952-958.

    Article  Google Scholar 

  25. A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas and V. S. R. Murti, Mater. Des., 2009, vol. 30, pp. 1612-1624.

    Article  Google Scholar 

  26. N. Liu, Z.G. Deng, and M.G. Huang, Mater. Sci. Technol., 1991, vol. 7 (11), pp. 1057-1062.;

    Article  Google Scholar 

  27. H. R. Yang, K. B. Lee and H. Kwon, Metall. Mater. Trans. A, 2001, vol. 32, pp. 2393-2396.

    Article  Google Scholar 

  28. L.A. Dobrzański, and J. Trzaska: J. Mater. Process. Technol., 2004, vol. 155, pp. 1950-1955.

    Article  Google Scholar 

  29. K. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721-727.

    Google Scholar 

  30. T. Furuhara, H. Saito, G. Miyamoto, and T. Maki: Materials Science Forum, 2010, vol. 654, pp. 7-10.

    Article  Google Scholar 

  31. H.J. Song, R.P. Shi, Y.Z. Wang and J.J. Hoyt: Metall. Mater. Trans. A, 2017, vol. 48 (6) pp. 2730-2738.

    Article  Google Scholar 

  32. H. I. Aaronson, G. Spanos, R. A. Masamura, R. G. Vardiman, D. W. Moon, E. S. K. Menon, and M. G. Hall: Mater. Sci. Eng. B, 1995, vol. 32, pp. 107-123.

    Article  Google Scholar 

  33. H. I. Aaronson and C. Wells: JOM, 1956, vol. 8, pp. 1216-1223.

    Article  Google Scholar 

  34. J. Kang, C.N. Li, G. Yuan, and G.D. Wang: Mater. Lett., 2016, vol. 175, pp. 157-160.

    Article  Google Scholar 

  35. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai: Metall. Mater. Trans. A, 2009, vol. 41, pp. 341-355.

    Google Scholar 

  36. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1-17.

    Article  Google Scholar 

  37. R. Kuzel: Z. Kristallogr. Suppl., 2006, vol. 2006, pp. 75-80.

    Article  Google Scholar 

  38. M.A. Krivoglaz: Z. Kristallogr., 1996, vol. 211, pp. 587-588.

    Google Scholar 

  39. S. Morito, J. Nishikawa, and T. Maki: ISIJ. Int., 2003, vol. 43, pp. 1475-1477.

    Article  Google Scholar 

  40. A. Zare, and A. Ekrami: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4422-4426.

    Article  Google Scholar 

  41. J. Zhang, H. Di, Y. Deng, and R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 627, pp. 230-240.

    Article  Google Scholar 

  42. D.K. Matlock, G. Krauss, L.F. Ramos, and G.S. Huppi: Structure and Properties of Dual-Phase Steels. AIME, New York, 1979, vol. 62.

    Google Scholar 

  43. E.N. Birgani, and M. Pouranvari: Metal 2009, Vol. 2009, pp. 19–21.

    Google Scholar 

  44. G. Stechauner and E. Kozeschnik: Acta Mater., 2015, 100: 135-146.

    Article  Google Scholar 

  45. K. C. Russell: Advances in Colloid and Interface Science, 1980, 13(3-4): 205-318.

    Article  Google Scholar 

  46. S.S. Xu, Y. Zhao, X. Tong, H. Guo, L. Chen, L.W. Sun, M. Peng, M.J. Chen, D. Chen, Y. Cui, G.A. Sun, S.M. Peng, and Z.W. Zhang: J. Alloy. Compd., 2017, vol. 712, pp. 573-578.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC Funding (51371062 and U1460102), NSFHLJ (JC2017012), Scientific Research Foundation for Returned Overseas Chinese Scholars (Heilongjiang Province), the Project for Innovative Talents of Science and Technology of Harbin (2014RFXXJ006) and the High-Tech Ship Research Projects Sponsored by MIIT (K24367). The neutron diffraction work at the China Academy of Engineering Physics (CAEP) is greatly appreciated. Thanks are due to Liangwei Sun and Guangai Sun, researchers from CAEP, for assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Zhang.

Additional information

Manuscript submitted August 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Guo, H., Xu, S.S. et al. Effects of Solid Solution Treatments on the Microstructure and Mechanical Properties of a Nanoscale Precipitate-Strengthened Ferritic Steel. Metall Mater Trans A 49, 3383–3393 (2018). https://doi.org/10.1007/s11661-018-4657-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4657-5

Navigation