Skip to main content
Log in

Development of Intergranular Residual Stress and Its Implication to Mechanical Behaviors at Elevated Temperatures in AL6XN Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Neutron diffraction was used to investigate the residual lattice strains in AL6XN austenitic stainless steel subjected to tensile loading at different temperatures, revealing the development of large intergranular stresses after plastic deformation. Elastic–plastic self-consistent modeling was employed to simulate the micromechanical behavior at room temperature. The overall variations of the modeled lattice strains as a function of the sample direction with respect to the loading axis agree in general with the experimental values, indicating that dislocation slip is the main plastic deformation mode. At 300 °C, the serrated flow in the stress–strain curve and the great amount of slip bands indicate the appearance of dynamic strain aging. Except for promoting the local strain concentration, the long-range stress field caused by the planar slip bands near the grain boundaries is also attributed to the decrease in the experimental intergranular strains. An increase in the lattice strains localized at some specific specimen orientations for reflections at 600 °C may be explained by the segregation of solute atoms (Cr and Mo) at dislocation slip bands. The evolution of full-width at half-maximum demonstrates that the dynamic recovery indeed plays an important role in alleviating the local strain concentrations during tensile loading at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.J. Meng, J. Sun, and H. Xing: J. Nucl. Mater., 2012, vol. 427, pp. 116-20.

    Article  Google Scholar 

  2. S. Kalnaus, F. Fan, A.K. Vasudevan, and Y. Jiang: Eng. Fract. Mech., 2008, vol. 75, pp. 2002-19.

    Article  Google Scholar 

  3. L.J. Meng, J. Sun, H. Xing, and W.W. Yu: Nucl. Eng. Des., 2011, vol. 241, pp. 2839-42.

    Article  Google Scholar 

  4. D. Ye, S. Matsuoka, N. Nagashima, and N. Suzuki: Mater. Sci. Eng. A, 2006, vol. 415, pp. 104-17.

    Article  Google Scholar 

  5. H. Behnken, and V. Hauk: Steel Res., 1996, vol. 67, pp. 423-29.

    Article  Google Scholar 

  6. Y.D. Wang, R.Lin Peng, X.-L. Wang, and R.L. Mcgreevy: Acta Mater., 2002, vol. 50, pp. 1717-34.

    Article  Google Scholar 

  7. X.-L. Wang, Y.D. Wang, A.D. Stoica, D.J. Horton, H. Tian, P.K. Liaw, H. Choo, J.W. Richardson, and E. Maxey: Mater. Sci. Eng. A, 2005, vol. 399, pp. 114-19.

    Article  Google Scholar 

  8. B. Clausenab, T. Lorentzena, and T. Leffersa: Acta Mater., 1998, vol. 46, pp. 3087-98.

    Article  Google Scholar 

  9. R.Lin Peng, M. Oden, Y.D. Wang, and S. Johansson: Mater. Sci. Eng. A, 2002, vol. 334, pp. 215-22.

    Article  Google Scholar 

  10. J. Hure, S. El Shawish, L. Cizelj, and B. Tanguy: J. Nucl. Mater., 2016, vol.476, pp. 231-42.

    Article  Google Scholar 

  11. I. Hamada, and K. Yamauchi: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2907-19.

    Article  Google Scholar 

  12. J.W.L. Pang, T.M. Holden, and T.E. Mason: Acta Mater., 1998, vol. 46, pp. 1503-18.

    Article  Google Scholar 

  13. T.M. Holden, R.A. Holt, and J.W.L. Pang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 749-55.

    Article  Google Scholar 

  14. T.M. Holden, A.P. Clarke, and R.A. Holt: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2565-76.

    Article  Google Scholar 

  15. T. Lorentzen, M.R. Daymond, B. Clausen, and C.N. Tomé: Acta Mater., 2002, vol. 50, pp. 1627-38.

    Article  Google Scholar 

  16. W. Kasprzak, D. Sediako, M. Walker, M. Sahoo, and I. Swainson: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1854-62.

    Article  Google Scholar 

  17. S. Van Petegem, J. Wagner, T. Panzner, M.V. Upadhyay, T.T.T. Trang, and H. Van Swygenhoven: Acta Mater., 2016, vol. 105, pp. 404-16.

    Article  Google Scholar 

  18. D.W. Brown, M.A. Okuniewski, B. Clausen, G.A. Moore, and T.A. Sisneros: J. Nucl. Mate., 2016, vol. 474, pp. 8-18.

    Article  Google Scholar 

  19. D.W. Brown, D.P. Adams, L. Balogh, J.S. Carpenter, B. Clausen, G King, B. Reedlunn, T.A. Palmer, M.C. Maguire, and S.C. Vogel: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 6055-69.

    Article  Google Scholar 

  20. P.A. Turner, and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143-53.

    Article  Google Scholar 

  21. B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, pp. 2456-68.

    Article  Google Scholar 

  22. C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tomé, and S.R. Agnew: Int. J. Plast., 2010, vol. 26, pp. 1772-91.

    Article  Google Scholar 

  23. M.R. Daymond, C.N. Tomé, and M.A.M. Bourke: Acta Mater., 2000, vol. 48, pp: 553-64.

    Article  Google Scholar 

  24. D.W. Brown, B. Clausen, T.A. Sisneros, L. Balogh, and I.J. Beyerlein: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5665-75.

    Article  Google Scholar 

  25. H. Wang, L. Capolungo, B. Clausen, and C.N. Tomé: Inter. J. Plast., 2017, vol. 93, pp. 251-68.

    Article  Google Scholar 

  26. S. Nemat-Nasser, W.G. Guo, and D.P. Kihl: J. Mech. Phys. Solids, 2001, vol. 49, pp. 1823-46.

    Article  Google Scholar 

  27. F.H. Abed, and G.Z. Voyiadjis: Int. J. Plast., 2005, vol. 21, pp. 1618-39.

    Article  Google Scholar 

  28. A.H. Cottrell: Am. J. Phys., 1953, vol.22, pp. 242-43.

    Article  Google Scholar 

  29. W. Karlsen, M. Ivanchenko, U. Ehrnstén, Y. Yagodzinskyy, and H. Hänninen: J. Nucl. Mater., 2009, vol. 395, pp. 156-61.

    Article  Google Scholar 

  30. C. Ye, S. Suslov, B.J. Kim, E.A. Stach, and G.J. Cheng: Acta Mater., 2011, vol. 59, pp. 1014-25.

    Article  Google Scholar 

  31. C Suryanarayana, M GrantNorton (1998) X-Ray Diffraction, Springer, Boston, pp. 3-19.

    Book  Google Scholar 

  32. K.D. Rogers, and P. Daniels: Biomaterials, 2002, vol. 23, pp. 2577-85.

    Article  Google Scholar 

  33. I.J. Beyerlein, and C.N. Tomé: Inter. J. Plast., 2008, vol. 24, pp. 867-95.

    Article  Google Scholar 

  34. R Madec, B Devincre, and L.P. Kubin: Phys. Rev. Lett., 2002, vol. 89, pp. 2555081-2555084.

    Article  Google Scholar 

  35. V. Gerold, and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177-83.

    Article  Google Scholar 

  36. R.G. Li, Q.G. Xie, Y.D. Wang, W.J. Liu, M.G. Wang, G.L. Wu, X.W. Li, M.H. Zhang, Z.P. Lu, C. Geng, and T. Zhu: Proc. Natl. Acad. Sci. USA, 2018, vol. 115, pp. 483-88.

    Article  Google Scholar 

  37. M. Kuzmina, M. Herbig, D. Ponge, S. Sandlöbes, and D. Raabe: Science, 2015, vol. 349, pp. 1080-83.

    Article  Google Scholar 

  38. H. Aboulfadl, J. Deges, P. Choi, and D. Raabe: Acta Mater., 2015, vol. 86, pp. 34-42.

    Article  Google Scholar 

  39. C.F. Jenkins, and G.V. Smith: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 2149-56.

    Google Scholar 

  40. R. Bullough, and B. A. Bilby: Proc. Phys. Soc., 1956, vol. 69, pp. 1276-86.

    Article  Google Scholar 

  41. T. Furuhara, and T. Maki: Mater. Sci. Eng. A, 2001, vol. 312, pp. 145-54.

    Article  Google Scholar 

  42. J.K.L. Kai: Mater. Sci. Eng. A, 1983, vol. 58, pp. 195-209.

    Article  Google Scholar 

  43. L. Tan, and Y. Yang: Mater. Lett., 2015, vol. 158, pp. 233-36.

    Article  Google Scholar 

  44. W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, and S.Y. Zhang: Acta Mater., 2013, vol. 61, pp. 4142-54.

    Article  Google Scholar 

  45. H.N. Han, and D.-W. Suh: Acta Mater., 2003, vol. 51, pp. 4907-17.

    Article  Google Scholar 

  46. G. Kurdjumow, and G. Sachs: Z. Phys., 1930, vol. 64, pp. 325-43.

    Article  Google Scholar 

  47. M.P. Butrón-Guillén, C.S. Da Costa Viana, and J.J. Jonas: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1755-68.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403804), the National Natural Science Foundation of China (Nos. 51231002 and 51401193), and the Joint Foundation of NSFC and CAEP (NSAF) (No. U1430132). Neutron diffraction experiment was carried out on the Residual Stress Neutron Diffraction (RSND) at the China Academic of Engineering Physics in Mianyang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Dong Wang.

Additional information

Manuscript submitted December 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Li, S., Li, H. et al. Development of Intergranular Residual Stress and Its Implication to Mechanical Behaviors at Elevated Temperatures in AL6XN Austenitic Stainless Steel. Metall Mater Trans A 49, 3237–3246 (2018). https://doi.org/10.1007/s11661-018-4655-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4655-7

Navigation