Skip to main content

Advertisement

Log in

Densification of ZrCx-ZrB2 Composites by Reactive Hot Pressing at Low Applied Pressure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dense ZrCx-ZrB2 (10 to 50 vol pct) composites were produced by reactive hot pressing (RHP) of different molar ratios Zr, C, and B powder mixtures at 4 to 7 MPa, 1200 °C for 60 minutes. An applied pressure of 4 MPa was found to be sufficient to produce ZrCx-ZrB2 (10 to 20 vol pct) composites with 96 to 97 pct relative density (RD). However, to achieve similar RD with a higher volume of ZrB2 (≤ 50 vol pct), 7 MPa was required. RHP of the 1.83Zr-0.5C-1.66B powder mixture (50 vol pct ZrB2) at 600 °C to 1200 °C for 5 minutes illustrated sluggishness of the reaction; the plasticity of Zr played a significant role in densification. Microhardness, indention fracture toughness, and three-point flexural strength of the ZrCx-ZrB2 (50 vol pct) composites are 14.7 ± 0.5 GPa, 5.5 ± 0.69 MPa√m, and 609 ± 38 MPa, respectively. Improvement in the mechanical properties of the composites is believed to be in distribution of ZrB2 platelets within the ZrCx matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.L. Chamberlain, W.G. Fahrenholtz, and G.E. Hilmas: J. Am. Ceram. Soc., 2006, vol. 89 (2), pp. 450–56.

    Article  Google Scholar 

  2. Y. Yan, Z. Huang, S. Dong, and D. Jiang: J. Am. Ceram. Soc., 2006, vol. 89 (11), pp. 3589–92.

    Article  Google Scholar 

  3. M. Brochu, B.D. Gauntt, L. Boyer, and R.E. Loehman: J. Eur. Ceram. Soc., 2009, vol. 29 (8), pp. 1493–99.

    Article  Google Scholar 

  4. F. Monteverde, S. Guicciardi, and A. Bellosi: Mater. Sci. Eng., A, 2003, vol. 346 (1–2), pp. 310–19.

    Article  Google Scholar 

  5. F. Monteverde, A. Bellosi, and S. Guicciardi: J. Eur. Ceram. Soc., 2002, vol. 22 (3), pp. 279–88.

    Article  Google Scholar 

  6. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D.T. Ellerby: J. Am. Ceram. Soc., 2004, vol. 87 (6), pp. 1170–72.

    Article  Google Scholar 

  7. E.W. Neuman, G.E. Hilmas, and W.G. Fahrenholtz: J. Am. Ceram. Soc., 2016, vol. 99 (2), pp. 597–03.

    Article  Google Scholar 

  8. M. Barsoum, A. Zavaliangos, S.R. Kalidindi, T. EI-Ragh, and D. Brodkin: JOM, 1995, vol. 47 (11), pp. 52–55.

    Article  Google Scholar 

  9. G.J. Zhang, M. Ando, J.F. Yang, T. Ohji, and S. Kanzaki: J. Eur. Ceram. Soc., 2004, vol. 24 (2), pp. 171–78.

    Article  Google Scholar 

  10. G.J. Zhang, Z.Y. Deng, N. Kondo, J.F. Yang, T. Ohji, and S. Kanzaki: J. Am. Ceram. Soc., 2000, vol. 83 (9), pp. 2330–32.

    Article  Google Scholar 

  11. A.L. Chamberlain, W.G. Fahrenholtz, and G.E. Hilmas: J. Am. Ceram. Soc., 2006, vol. 89 (12), pp. 3638–45.

    Article  Google Scholar 

  12. J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, F. Monteverde, and A. Bellosi: J. Eur. Ceram. Soc., 2007, vol. 27 (7), pp. 2729–39.

    Article  Google Scholar 

  13. W.W. Wu, G.J. Zhang, Y.M. Kan, and P.L. Wang: J. Am. Ceram. Soc., 2008, vol. 91 (8), pp. 2501–08.

    Article  Google Scholar 

  14. J.M. Lonergan, W.G. Fahrenholtz, and G.E. Hilmas: J. Am. Ceram. Soc., 2015, vol. 98 (8), pp. 2344–51.

    Article  Google Scholar 

  15. L. Rangaraj, S.J. Suresha, C. Divakar, and V. Jayaram: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1496–05.

    Article  Google Scholar 

  16. N. Chidambaram, L. Rangaraj, C. Divakar, and V. Jayaram: J. Am. Ceram. Soc., 2010, vol. 93 (5), pp. 1341–46.

    Google Scholar 

  17. L. Rangaraj, C. Divakar, and V. Jayaram: J. Eur. Ceram. Soc., 2010, vol. 30 (1), pp. 129–38.

    Article  Google Scholar 

  18. L. Rangaraj, C. Divakar, and V. Jayaram: J. Eur. Ceram. Soc., 2010, vol. 30 (15), pp. 3263–66.

    Article  Google Scholar 

  19. S. Guo: J. Eur. Ceram. Soc., 2014, vol. 34 (3), pp. 621–32.

    Article  Google Scholar 

  20. D. Brodkin, S.R. Kalidindi, M.W. Barsoum, and A. Zavaliangos: J. Am. Ceram. Soc., 1996, vol. 79 (7), pp. 1945–52.

    Article  Google Scholar 

  21. M.W. Barsoum and B. Houng: J. Am. Ceram. Soc., 1993, vol. 76 (6), pp. 1445–51.

    Article  Google Scholar 

  22. T. Chakrabarti, L. Rangaraj, and V. Jayaram: J. Am. Ceram. Soc., 2014, vol. 97 (10), pp. 3092–02.

    Article  Google Scholar 

  23. T. Chakrabarti, L. Rangaraj, and V. Jayaram: J. Mater. Res., 2015, vol. 30 (12), pp. 876–86.

    Article  Google Scholar 

  24. L. Rangaraj, T. Chakrabarti, K. Rajaguru, and V. Jayaram: J. Mater. Res., 2016, vol. 31 (4), pp. 506–15.

    Article  Google Scholar 

  25. J.K. Chakravartty, Y.V.R.K. Prasad, and M. Asundi: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 829–36.

    Article  Google Scholar 

  26. P. Zwigl and D.C. Dunand: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2571–82.

    Article  Google Scholar 

  27. P.M. Sargent and M.F. Ashby: Scripta Metall., 1982, vol. 16 (12), pp. 1415–22.

    Article  Google Scholar 

  28. Z.A. Munir: Am. Ceram. Soc. Bull., 1988, vol. 67 (2), pp. 342–49.

    Google Scholar 

  29. K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett., 1982, vol. 1 (1), pp. 13–16

    Article  Google Scholar 

  30. J.S. Lannin: Solid State Comm., 1978, vol. 25 (6), pp. 363–66

    Article  Google Scholar 

  31. H. Werhelt, V. Fillpov, U. Kuhlmann, U. Schwarz, M. Armbruster, A.L. Jasper, T. Tanaka, I. Higashi, T. Lundstrom, V.N. Gurin, and M.M. Korsukova: Sci. Technol. Adv. Mater., 2010, vol. 11 (2), pp. 1–27

    Google Scholar 

  32. A. Jain, C. Ghosh, T.R. Ravindran, S. Anthonysamy, R. Divakar, E. Mohandas, and G.S. Gupta: Bull. Mater. Sci., 2013, vol. 36 (7), pp. 1323–29.

    Article  Google Scholar 

  33. R. Kannan, K. Venkateswarlu, and L. Rangaraj: Int. J. Appl. Ceram. Technol. (in press).

  34. A.I. Gusev, A.A. Rempel, and A.J. Magerl: Springer Series in Materials Science, Springer, New York, NY, 2001.

    Google Scholar 

  35. D. Agaogullari, H. Gorce, I. Duman, and M.L. Ovecoglu: J. Eur. Ceram. Soc., 2012, vol. 32 (7), pp. 1447–55.

    Article  Google Scholar 

  36. A.W. Weimer: Carbide, Nitride and Boride Materials Synthesis and Processing, Chapman and Hall Publications, London, 1997, p. 643.

    Google Scholar 

  37. T. Tsuchida and S. Yamamoto: J. Eur. Ceram. Soc., 2004, vol. 24 (1), pp. 45–51.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Science and Engineering Research Board, Department of Science and Technology (Project Sanction No. SB/EMEQ-313/2013, dated August 27, 2013), New Delhi, Government of India. The authors thank Dr. S.K. Bhaumik, Head, MSD-NAL, for fruitful discussions during preparation of the manuscript. The authors are thankful to Dr. Anjana Jain, MSD-NAL, for recording XRD patterns; Mr. M. Mahesh, STTD-NAL, for flexural strength measurement; Messrs. Siju and N.T. Manikandanath, SED-NAL, for FE-SEM and Micro-Raman Spectroscopy; and Dr. Padaikathan, Department of Materials Engineering, Indian Institute of Science, Bangalore, for DTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingappa Rangaraj.

Additional information

Manuscript submitted October 13, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, R., Rangaraj, L. Densification of ZrCx-ZrB2 Composites by Reactive Hot Pressing at Low Applied Pressure. Metall Mater Trans A 49, 3539–3549 (2018). https://doi.org/10.1007/s11661-018-4647-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4647-7

Navigation