Skip to main content
Log in

Understanding the Effect of Ni on Mechanical and Wear Properties of Low-Carbon Steel from a View-Point of Electron Work Function

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electron work function (EWF) is correlated to intrinsic properties of metallic materials and can be an alternative parameter to obtain supplementary clues for guiding material design and modification. A higher EWF corresponds to a more stable electronic state, leading to higher resistance to any attempt to change the material structure and properties. In this study, effects of Ni as a solute with a higher EWF on mechanical, electrochemical, and tribological properties of low-carbon steel were investigated. Added Ni, which has more valence electrons, enhanced the electrons-nuclei interaction in the steel, corresponding to higher EWF. As a result, the Ni-added steel showed increased mechanical strength and corrosion resistance, resulting in higher resistances to wear and corrosive wear. Mechanism for the improvements is elucidated through analyzing EWF-related variations in Young’s modulus, hardness, corrosion potential, and tribological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Li, D.Y. Li: Wear, 2003, vol. 255, pp. 333-340.

    Article  Google Scholar 

  2. H. Fu, Q. Xiao, J. Kuang, Z. Jiang, J. Xing: Mater. Sci. Eng. A, 2007, vol. 466, pp. 160-165.

    Article  Google Scholar 

  3. K. Van Acker, D. Vanhoyweghen, R. Persoons, J. Vangrunderbeek: Wear, 2005, vol. 258, pp. 194-202.

    Article  Google Scholar 

  4. Y. Sun, T. Bell: Mater. Sci. Eng. A, 1991, vol. 140, pp. 419-434.

    Article  Google Scholar 

  5. A. Leyland, A. Matthews: Wear, 2000, vol. 246, p. 1-11.

    Article  Google Scholar 

  6. B. Podgornik, B. Žužek, F. Kafexhiu, V. Leskovšek: Tribol. Lett., 2016, vol. 63, pp. 1-10.

    Article  Google Scholar 

  7. L. Li, D.Y. Li: Wear, 2013, vol. 301, pp. 70-75.

    Article  Google Scholar 

  8. X.H. Tang, L. Li, B. Hinckley, K. Dolman, L. Parent, D.Y. Li: Tribol. Lett., 2015, vol. 58, pp. 1-10.

    Article  Google Scholar 

  9. J. Cui, H. Guo, J.W. Li, D.Y. Li, L. Parent, H. Tian: Tribol. Lett., 2016, vol. 103, pp. 432-439.

    Article  Google Scholar 

  10. M. Filipovic, Z. Kamberovic, M. Korac, M. Gavrilovski: Met. Mater. Int, 2013, vol. 19, pp. 473-481.

    Article  Google Scholar 

  11. S. Halas: Mater. Sci-Pol., 2006, vol. 24, pp. 952-966.

    Google Scholar 

  12. N.D. Lang, W. Kohn: Phys. Rev. B, 1971, vol. 3 pp. 1215-1223.

    Article  Google Scholar 

  13. G.V. Samsonov, V.S. Fomenko, I.A. Podchernyaeva, L.N. Okhremchuk: Sov. Powder Metall. Met. Ceram. 1974, vol. 13, pp. 836-842.

    Article  Google Scholar 

  14. G. Hua, D. Li: Appl. Phys. Lett., 2011, vol. 99, pp. 041907.

    Article  Google Scholar 

  15. G.M. Hua, D.Y. Li: Phys. Status Solidi B, 2012, vol. 249 pp. 1517-1520.

    Article  Google Scholar 

  16. H. Lu, D. Li: Phys. Status Solidi B, 2014, vol. 251, pp. 815-820.

    Article  Google Scholar 

  17. H. Lu, G. Hua, D. Li: Appl. Phys. Lett., 2013, vol. 103 pp. 261902.

    Article  Google Scholar 

  18. H. Lu, X. Huang, D. Li: J. Appl. Phys, 2014, vol. 116, pp. 173506.

    Article  Google Scholar 

  19. H. Lu, Z. Liu, X. Yan, D. Li, L. Parent, H. Tian: Sci. Rep., 2016, vol. 6, pp. 24366.

    Article  Google Scholar 

  20. Y. Li, D.Y. Li: J. Appl. Phys, 2004, vol. 95 pp. 7961.

    Article  Google Scholar 

  21. J. Krim, C. Daly, A. Dayo: Tribol. Lett, 1995, vol. 1, pp. 211-218.

    Article  Google Scholar 

  22. S. Liu, H. Lu, D.Y. Li: Appl. Surf. Sci., 2015, vol. 351, pp. 316-319.

    Article  Google Scholar 

  23. Y. Li, D.Y. Li: Wear, 2005, vol. 259, pp. 1432-1436.

    Article  Google Scholar 

  24. A.L. Zharin, D.A. Rigney: Tribol. Lett., 1998, vol. 4, pp. 205-213.

    Article  Google Scholar 

  25. X.C. Huang, H. Lu, D.Y. Li: Mater. Chem. Phys, 2016, vol. 173, pp. 238-245.

    Article  Google Scholar 

  26. C. Oernek, D.L. Engelberg: J. Mater. Sci., 2016, vol. 51, pp. 1931-1948.

    Article  Google Scholar 

  27. W. Li, D.Y. Li: Surf. Rev. Lett., 2004, vol. 11, pp. 173-178.

    Article  Google Scholar 

  28. Z.Yang, H. Lu, Z. Liu, X. Yan, D. Li: RSC Adv., 2016, vol. 6 pp. 18793-18799.

    Article  Google Scholar 

  29. S.S. Sohn, S.Y. Han, S.Y. Shin, J. Bae, S. Lee: Met. Mater. Int., 2013, vol. 19 pp. 423-431.

    Article  Google Scholar 

  30. C.Y. Tang, D.Y. Li, G.W. Wen: Tribol. Lett., 2011, vol. 41, pp. 569-572.

    Article  Google Scholar 

  31. L. Yue, H. Zhang, D.Y. Li: Scripta Mater., 2010, vol. 63, pp.1116-1119.

    Article  Google Scholar 

  32. D. Zhu, H. Zhang, D. Y. Li: J Appl. Phys., 2011, vol. 110, pp.124911.

    Article  Google Scholar 

  33. W. Li, D.Y. Li: Mater. Sci. Technol., 2002. vol. 18, pp. 1057-1060.

    Article  Google Scholar 

  34. W. Li, Y. Wang, D.Y. Li: Phys. Status Solidi A, 2004, vol. 201 pp. 2005-2012.

    Article  Google Scholar 

  35. W. Li, D.Y. Li: J Appl. Phys, 2006, vol. 99, pp. 073502.

    Article  Google Scholar 

  36. H.B. Michaelson: J. Appl. Phys., 1977, vol. 48 pp. 4729-4733.

    Article  Google Scholar 

  37. K. L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985.

    Book  Google Scholar 

  38. S. Halas, T. Durakiewicz: J. Phys. Condens. Matter., 1999, vol. 10, pp. 10815.

    Article  Google Scholar 

  39. E. Rabinowicz: Friction and wear of materials, Wiley, New York, NY, 1965.

    Google Scholar 

  40. M. Methfessel, D. Hennig, M. Scheffler: Phys. Rev. B, 1992, vol. 46, pp. 4816-4829.

    Article  Google Scholar 

  41. S. Mosleh-Shirazi, G. Hua, F. Akhlaghi, X. Yan, D. Li: Sci. Rep., 2015, vol. 5, pp. 18154.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Natural Science and Engineering Research Council of Canada, Suncor Energy, GIW Industries Inc., Camber Technology Corporation, Shell Canada Ltd., Magna International Inc. and Volant Products Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Li.

Additional information

Manuscript submitted May 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Huang, X., Hou, R. et al. Understanding the Effect of Ni on Mechanical and Wear Properties of Low-Carbon Steel from a View-Point of Electron Work Function. Metall Mater Trans A 49, 2612–2621 (2018). https://doi.org/10.1007/s11661-018-4616-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4616-1

Navigation