Skip to main content
Log in

Strain-Induced Martensitic Transformation Kinetic in Austempered Ductile Iron (ADI)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model for the strain-induced martensitic transformation in austempered ductile iron (ADI) has been developed based on neutron diffraction studies. Quantitative phase analysis was carried out using the Rietveld method including texture analysis. The key parameters applied in this model that influence the strain-induced martensitic transformation are temperature, strain state, and loading type. An empirical relation was derived for the martensite start temperature M s in austempered ductile iron, which takes into account the Ni and carbon content. The M s temperature was used as a scaling parameter for the stability of austenite in the model to describe the strain-induced phase transformation in austempered ductile iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] L. Meier, M. Hofmann, P. Saal, W. Volk and H. Hoffmann: Mater. Char., 2013, vol. 85, pp. 124-133.

    Article  Google Scholar 

  2. [2] J. Aranzabal, I. Gutierrez, J. M. Rodriguez-Ibabe and J. J. Urcola: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1143-1156.

    Article  Google Scholar 

  3. [3] M. A. Yescas and H. K. D. H. Bhadeshia: Mater. Sci. Eng. A, 2002, vol. 333, pp.60-66.

    Article  Google Scholar 

  4. [4] A. Vasko: Archives of foundry engineering, 2009, vol.9, pp.133-136.

    Google Scholar 

  5. [5] P. Saal, L. Meier, X. H. Li, M. Hofmann, M. Hoelzel, J. N. Wagner and W. Volk: Metall. Mater. Trans. A, 2016, vol. 47, pp.661-671.

    Article  Google Scholar 

  6. [6] H. N. Han, C. G. Lee, C. S. Oh, T. H. Lee and S. J. Kim: Acta Mater., 2004, vol. 52, pp. 5203-5214.

    Article  Google Scholar 

  7. [7] D. Myszka, E. Skolek and A. Wieczorek: Archives of Metallurgy and Materials, 2014, vol. 59, pp. 1217-1221.

    Google Scholar 

  8. [8] W. Böhme and L. Reissig: Adv. Eng. Mater., 2015, vol. 17, no.8, pp. 1189-1196.

    Article  Google Scholar 

  9. [9] J. L. Garin and R. L. Mannheim: J Mater. Process. Tech., 2003, vol. 143-144, pp. 347-351.

    Article  Google Scholar 

  10. [10] S. D. Antolovich and B. Singh: Met. Trans., 1970, vol. 1, no. 12, pp. 3463-3465.

    Google Scholar 

  11. [11] K. Sugimoto, N. Usui, M. Kobayashi and S. Hashimoto: ISIJ International, 1992, vol. 32, no. 12, pp. 1311-1318.

    Article  Google Scholar 

  12. [12] J. Chiang, B. Lawrence, J. D. Boyd and A. K. Pilkey: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4516-4521.

    Article  Google Scholar 

  13. [13] E. S. Rowland and S R Lyle; Trans ASM, 37 (1946) pp. 27-47.

    Google Scholar 

  14. [14] R. A. Grange and H. M. Stewart: Trans. AIME, 1946, vol. 167, pp.467-490.

    Google Scholar 

  15. [15] W. Steven and A. G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp.349-359.

    Google Scholar 

  16. K. W. Andrews: JISI, 1965, vol. 203, pp. 721–727.

    Google Scholar 

  17. [17] C. Capdevila, F. G. Caballero and C. G. de Andrés: Mater. Sci. Technol., 2003, vol.19, pp. 581-586.

    Article  Google Scholar 

  18. [18] A. Stormvinter, A. Borgenstam and J. Agren: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3870-3879.

    Article  Google Scholar 

  19. [19] S. M. C. van Bohemen: Mater. Sci. Techn., 2012, vol. 28, no.4, pp. 487-495.

    Article  Google Scholar 

  20. [20] K. Sugimoto, M. Kobayashi and S. Hashimoto: Metall. Trans. A, 1992, vol. 23A, pp. 3085-3091.

    Article  Google Scholar 

  21. [21] M. Maalekian and E. Kozeschnik: Mater. Sci. Forum, 2010, vol. 638-642, pp. 2634-2639.

    Article  Google Scholar 

  22. [22] G. B. Olson and M. Cohen: Met. Trans. A, 1975, vol. 6A, pp.791-795.

    Article  Google Scholar 

  23. [23] R. G. Stringfellow, D. M. Parks and G. B. Olsen: Acta Metall. Mater., 1992, vol. 40, pp. 1703-1716.

    Article  Google Scholar 

  24. [24] J. Burke: Kinetics of Phase Transformation in Metals, Pergamon Press, Oxford, United Kingdom, 1965.

    Google Scholar 

  25. [25] O. Matsumura, Y. Sakuma and H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301-06.

    Article  Google Scholar 

  26. N. Tsuchida, Y. Tomota: Mater. Sci. Eng., 2000, vol. 285, pp. 345-52.

    Google Scholar 

  27. [27] H. C. Shin, T. K. Ha and Y. W. Chang: Scripta Mater., 2001, vol.45 pp. 823-829.

    Article  Google Scholar 

  28. [28] E. Jimenez-Melero, N. H. van Dijk, L. Zhao, J. Sietsma, J. P. Wright and S. van der Zwaag: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6407-6416

    Article  Google Scholar 

  29. [29] P. G. Xu, Y. Tomota, Y. Arakaki, S. Harjo and H. Sueyoshi: Mater. Char., 2017, vol. 127, pp. 104-110

    Article  Google Scholar 

  30. [30] T. Gnäupel-Herold and A. Creuziger: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3594-3600

    Article  Google Scholar 

  31. [31] M. Hoelzel, W. M. Gan, M. Hofmann, C. Randau, G. Seidl, P. Juettner and W. W. Schmahl: Nucl. Instr. Meth. Phys. Res. A, 2013, vol. 711, pp. 101-105.

    Article  Google Scholar 

  32. [32] M. Hofmann, W. M. Gan und J. Rebelo-Kornmeier: Journal of large-scale research facilities, 2015, vol. 1, A6.

    Article  Google Scholar 

  33. [33] M. Dahms and H. J. Bunge: J. Appl. Cryst., 1989, vol. 22, pp.439-447.

    Article  Google Scholar 

  34. [34] M. Hoelzel, A. Senyshyn and O. Dolotko: Nucl. Instr. Meth. Phys. Res. A, 2012, vol. 667, pp. 32-37.

    Article  Google Scholar 

  35. [35] M. Ferrari and L. Lutterotti: J. Appl. Phys., 1994, vol. 76, no.11, pp.7246-55.

    Article  Google Scholar 

  36. [36] L. Lutterotti, S. Matthies, H-R Wenk, A. J. Schultz and J. Richardson: J. Appl. Phys., 1997, vol. 81, pp.594-600.

    Article  Google Scholar 

  37. [37] H. S. Yang and H. K. D. H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, no.5, pp. 556-560

    Article  Google Scholar 

  38. [38] D. P. Koistinen and R. E. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

  39. [39] X. H. Li, P. Saal, M. Landesberger, M. Hoelzel and M. Hofmann: J. Phys.: Conf. Ser., 2016, vol. 746, 012055.

    Article  Google Scholar 

  40. [40] R. J. Asaro and A. Needleman: Acta Metall., 1985, vol.33, No.6, pp. 923-953.

    Article  Google Scholar 

  41. [41] A. Bhattacharyya, D. Rittel and G. Ravichandran: Scripta Mater., 2005, vol. 52, pp. 657-661.

    Article  Google Scholar 

  42. [42] S. R. Bodner and M. B. Rubin: J Appl Phys, 1994, vol. 76, pp. 2742-2747.

    Article  Google Scholar 

  43. [43] H. Y. Yu: Metall and Mat Trans A, 1997, vol.28, pp. 2499-2506.

    Article  Google Scholar 

  44. [44] D. Rittel, G. Ravichandran and S. Lee: Mech. Mater., 2002, vol. 34, pp. 627-642.

    Article  Google Scholar 

  45. G. N. Haidemenopoulos and A. N. Vasilakos: Steel Res., 1996, vol. 67, pp. 513-519

    Article  Google Scholar 

  46. [47] H. –R. Wenk, S. Matthies, J. Donovan and D. Chateigner: J. Appl. Cryst., 1998, vol. 31, pp. 262-269

    Article  Google Scholar 

  47. [48] A. Itami, M. Takahashi and K. Ushioda: ISIJ International, 1995, vol. 35, no.9, pp. 1121-1127.

    Article  Google Scholar 

  48. L. Meier: In-situ Messung der Phasenumwandlungskinetik von ausferritischem Gusseisen, TU München, PhD thesis (2016), ISBN: 978-3-8440-5027-1

Download references

Acknowledgments

Funding by Grant PE 580/14-1 of the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. We thank Dr. Andreas Stark (HZG) and Daniel Traxl (utg) for their help with the dilatometer measurements and Peter Bieber (MLZ) for his assistance with the quench experiments. We would also like to thank Professor Dr. Stewart J. Campbell (UNSW Canberra) for valuable discussions and critical appraisal of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hofmann.

Additional information

Manuscript submitted 1 February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.H., Saal, P., Gan, W.M. et al. Strain-Induced Martensitic Transformation Kinetic in Austempered Ductile Iron (ADI). Metall Mater Trans A 49, 94–104 (2018). https://doi.org/10.1007/s11661-017-4420-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4420-3

Navigation