Skip to main content
Log in

Thermodynamically Based Prediction of the Martensite Start Temperature for Commercial Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A thermodynamic method for predicting the martensite start temperature of commercial steels is developed. It is based mainly on information on M s from binary Fe-X systems obtained from experiments with very rapid cooling, and M s values for lath and plate martensite are treated separately. Comparison with the experimental M s of several sets of commercial steels indicates that the predictive ability is comparable to models based on experimental information of M s from commercial steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Payson and C.H. Savage: Trans. ASM , 1944, vol. 33, pp. 261–75.

    Google Scholar 

  2. L.A. Carapella: Met. Progr., 1994, vol. 46, p. 108.

    Google Scholar 

  3. E.S. Rowland and S.R. Lyle: Trans. ASM, 1946, vol. 37, pp. 27–47.

    Google Scholar 

  4. R.A. Grange and H.M. Stewart: Trans. AIME, 1946, vol. 167, pp. 467–501.

    Google Scholar 

  5. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  6. J. Wang, P.J. van der Wolk, and S. van der Zwaag: Mater. Trans. JIM, 2000, vol. 41, pp. 761–68.

    CAS  Google Scholar 

  7. B. Skrotzki and E. Hornbogen: Projekt COSMOS—Temperaturen und Verlauf der martensitischen Umwandlung in Stahlen, Max-Planck Institut fur Eisenforschung, 1991, pp. 1–25.

  8. T. Sourmail and C. Garcia-Mateo: Comput. Mater. Sci., 2005, vol. 34(4), pp. 323–34.

    Article  CAS  Google Scholar 

  9. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–95.

    Google Scholar 

  10. C.H. Johansson: Arch. Eisenhuettenwes, 1937, vol. 11, p. 241.

    CAS  Google Scholar 

  11. L. Kaufman and M. Cohen: Progr. Met. Phys., 1958, vol. 7, pp. 165–246.

    Article  CAS  Google Scholar 

  12. T. Hsu and H. Chang: Acta Metall., 1984, vol. 32(3), pp. 343–48.

    Article  CAS  Google Scholar 

  13. T.Y. Hsu: J. Mater. Sci., 1985, vol. 20, pp. 23–31.

    Article  Google Scholar 

  14. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42(10), pp. 3361–70.

    Article  CAS  Google Scholar 

  15. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42(10), pp. 3371–79.

    Article  CAS  Google Scholar 

  16. V. Raghavan and D. Antia: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1127–32.

    Article  CAS  Google Scholar 

  17. C. Kung and J. Rayment: Metall. Mater. Trans. A, 1982, vol. 13A, pp. 328–31.

    CAS  Google Scholar 

  18. J. Wang, P.J. van der Wolk, and S. van der Zwaag: Mater. Trans. JIM, 2000, vol. 41, pp. 769–76.

    CAS  Google Scholar 

  19. J. Wang, P.J. van der Wolk, and S. van der Zwaag: Iron Steel Inst. Jpn. Int., 1999, vol. 39, pp. 1038–46.

    Article  CAS  Google Scholar 

  20. O.P. Morozov, D.A. Mirzayev, and M.M. Shteynberg: Phys. Met. Metallogr., 1971, vol. 32, pp. 170–77.

    Google Scholar 

  21. O.P. Morozov, D.A. Mirzayev, and M.M. Shteynberg: Phys. Met. Metallogr., 1972, vol. 34, pp. 114–19.

    Google Scholar 

  22. A. Borgenstam and M. Hillert: Acta Mater., 1997, vol. 45(5), pp. 2079–91.

    Article  CAS  Google Scholar 

  23. D.A. Mirzayev, M.M. Shteynberg, T.N. Ponomareva, and V.M. Schastlivtsev: Phys. Met. Metallogr., 1980, vol. 47, pp. 102–11.

    Google Scholar 

  24. M. Oka and H. Okamoto: Metall. Trans. A, 1988, vol. 19A, pp. 447–52.

    CAS  Google Scholar 

  25. D.A. Mirzayev, O.P. Morozov, and M.M. Shteynberg: Phys. Met. Metallogr., 1973, vol. 6, pp. 99–105.

    Google Scholar 

  26. D.A. Mirzayev, V.N. Karzunov, V.N. Schastlivtsev, I.I. Yakovleva, and Y.V. Kharitonova: Phys. Met. Metallogr. , 1986, vol. 61, pp. 114–22.

    Google Scholar 

  27. E.A. Wilson: Postdoctoral Thesis, University of Liverpool, Liverpool, 1965.

  28. M.M. Shteynberg, D.A. Mirzayev, and T.N. Ponomareva: Phys. Met. Metallogr., 1977, vol. 43, pp. 143–49.

    Google Scholar 

  29. W.D. Swanson and J.G. Parr: J. Iron Steel Inst., 1964, vol. 204, pp. 104–06.

    Google Scholar 

  30. D.A. Mirzayev, S.Y. Karzunov, V.M. Schastlivtsev, I.L. Yakovleva, and Y.V. Kharitonova: Phys. Met. Metallogr., 1986, vol. 62, pp. 100–09.

    Google Scholar 

  31. G. Ghosh and G.B. Olson: J. Phase Equlibria, 2001, vol. 22, pp. 199–207.

    Article  CAS  Google Scholar 

  32. G. Ghosh and G.B. Olson: Acta Mater., 2002, vol. 50(10), pp. 2655–75.

    Article  CAS  Google Scholar 

  33. J.C. Fisher: Trans. AIME, 1949, vol. 185, pp. 688–90.

    Google Scholar 

  34. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD Phy., 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  35. TCSAB: Tcfe6-tcs steels/fe-alloys database 6.

  36. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.

    CAS  Google Scholar 

  37. G. Vander Voort: Atlas for Time-Temperature Diagrams for Iron and Steels, ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 55–114, 163–220.

  38. H. Finkler and M. Schirra: Steel Res., 1996, vol. 67, pp. 328–42.

    CAS  Google Scholar 

  39. W. Xiong, H. Zhang, L. Vitos, and M. Selleby: Acta Mater., 2011, vol. 59(2), pp. 521–30.

    Article  CAS  Google Scholar 

  40. D.A. Mirzayev, V.M. Schastlivtsev, and S.Y.E. Karzunov: Phys. Met. Metallogr., 1987, vol. 63, pp. 129–32.

    Google Scholar 

  41. E. Wilson: Iron Steel Inst. Jpn. Int., 1994, vol. 34(8), pp. 615–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed within the VINN Excellence Center Hero-m, financed by VINNOVA, the Swedish Governmental Agency for Innovation Systems, Swedish Industry, and the KTH Royal Institute of Technology. Professor M. Hillert is gratefully acknowledged for helpful discussions and valuable comments on the manuscript. Dr. L. Höglund is gratefully acknowledged for valuable contributions to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albin Stormvinter.

Additional information

Manuscript submitted April 26, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stormvinter, A., Borgenstam, A. & Ågren, J. Thermodynamically Based Prediction of the Martensite Start Temperature for Commercial Steels. Metall Mater Trans A 43, 3870–3879 (2012). https://doi.org/10.1007/s11661-012-1171-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1171-z

Keywords

Navigation