Skip to main content

Advertisement

Log in

Stress Corrosion Behavior of Low-temperature Liquid-Nitrided 316 Austenitic Stainless Steel in a Sour Environment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low-temperature nitridation is a widely used surface heat treatment. Low-temperature liquid nitridation was applied to 316 austenitic stainless steel and an S-phase (expanded austenite) layer was achieved on the alloy surface. The effect of the S-phase layer on corrosion resistance and stress corrosion cracking was investigated in a sour environment. When a bending stress of 164 MPa (80 pct yield stress, YS) was applied, no macroscopic corrosion cracking and pits were observed on the nitrided samples and the S-phase layer stayed intact. Although no macroscopic corrosion cracking was observed on the non-nitrided samples under 205 MPa (100 pct YS), some pits were formed on the alloy surface. This could be attributed to the high stresses and hardness, and the excellent corrosion resistance of the S-phase layer introduced by low-temperature nitridation. Supersaturated nitrogen atoms in the S-phase layer can effectively prevent the decrease in pH of the corrosive medium and accelerate the alloy repassivation kinetics. However, when the bending stress was increased to 205 and 246 MPa (100 pct YS, 120 pct YS), macroscopic cracks were observed in the presence of both tensile stress and a corrosive medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Tomio,M. Sagara,T. Doi,H. Amaya, N. OtsuKa. Corros. Sci.,2015, 98: 319-398.

    Article  Google Scholar 

  2. [2]W. Liang, X.L. Pang, and K.W. Gao: Corros. Sci., 2016, vol.111,pp.637-648.

    Article  Google Scholar 

  3. [3]W.J. Yang, M. Zhang, Y.H. Zhao, M.L. Shen,H. Lei,L. Xu,J.O. Xiao,J. Gong, B.H. Yu, and C. Sun: Surf. Coat. Tech., 2016, vol.298,pp.64-72.

    Article  Google Scholar 

  4. [4]M. Laleh, F. Kargar, and M. Velashjerdi: J. Mater. Eng. Perform., 2013, vol.22,pp.1304-1310.

    Article  Google Scholar 

  5. [5]H. Wang,P. Zhou,S. Huang, and C. Yu: Int. J. Electrochemi. Sci., 2016, vol.11,pp.1293-1309.

    Google Scholar 

  6. [6]J. Fliethmann, H. Schlerkmann, and W. Schwenk: Corros. Sci., 1992, vol.24,pp.746.

    Google Scholar 

  7. M. Ueda: EP Patent, no. 0851037, 2002.

  8. [8]G.O. Lauvstad, R. Johnsen, O. Borck, E.F.D. Silva,and J. Walmslse: Corrosion,11-15 March,NACE International,Nashville Tennessee,2007,pp.076601-15.

    Google Scholar 

  9. [9]L.W. Tsay, M.Y. Chi, H.R. Chen, and C. Chen: Mater. Sci. Eng. A, 2006, vol.416, pp.155-160.

    Article  Google Scholar 

  10. [10]K.G. Solheim, J.K. Solberg, J. Walmsley,F. Rosenqvist,and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol.34, pp.140-149.

    Article  Google Scholar 

  11. [11]W.T. Tsai, and S.L. Chou: Corros. Sci., 2000, vol.42,pp.1741-1762.

    Article  Google Scholar 

  12. [12]E.B. Hansson,M.S. Odziemkowski,R.W. Gillham: Corros. Sci., 2006, vol.48,pp.3767–3783.

    Article  Google Scholar 

  13. [13]M. Castillo, H. Rincon, S. Duplat, E. Baron, and J. Vera: Corrosion, NACE International,Orlando, Florida, USA,2000

    Google Scholar 

  14. [14]W. He, O. Knudsen, and S. Diplas: Corros. Sci., 2009, vol.51,pp.2811-2819.

    Article  Google Scholar 

  15. [15]K. Funatani: Met. Sci. Heat. Treat., 2004, vol.46, pp.277-281.

    Article  Google Scholar 

  16. J.R. Easterday and J.F. Pilznienski: US Patent, no. 6746546, 2004.

  17. [17]Sun Y, and Bell T: Wear, 1998, vol.218,pp.34-42.

    Article  Google Scholar 

  18. Dong H. Int. Mater. Rev., 2010, 55(2):65-98.

    Article  Google Scholar 

  19. [19]X.Y. Li, H. Dong: Mater. Sci. Tech. Ser, 2003, vol.19,pp.1427-1434.

    Article  Google Scholar 

  20. K.A. Moyer: US Patent, no. 8182617, 2012.

  21. D.Z. Zeng, N.Y Zhang, G. Tian, J.Y. Hu, Z. Zhang, T.H. Shi. Jou. Wuhan Univ. Technol., 2015, 30(2):397-403.

    Article  Google Scholar 

  22. [22]Y. Sun, X.Y. Li, T. Bell: J. Mater. Sci., 1999, vol.34,pp.4793-4802.

    Article  Google Scholar 

  23. [23]W. Shi, X.Y. Li, and H. Dong: Wear, 2001, vol.250,pp.544-552.

    Article  Google Scholar 

  24. D Manova, G Thorwarth, S Mändl, H Neumann, B Stritzker, B. Rauschenbach. Nuclear Instrum. Methods (2006) 242: 285-288.

    Article  Google Scholar 

  25. [25]H. Dong, M. Esfandiari, and X.Y. Li: Surf. Coat. Technol., 2008,vol. 202,pp.2969-2975

    Article  Google Scholar 

  26. MK Lei, ZL Zhang. J. Vac. Sci. Technol. A (1997) 15: 421-427.

    Article  Google Scholar 

  27. [27]D. Li, W. Hao, Y. Liu, G. Lu: Corrosion, NACE International,San Antonio,Texas,USA, 2014

    Google Scholar 

  28. D Wang, F Ernst, H Kahn, AH Heuer. Metall. Mat. Trans. A (2014) 45(8): 3578-3585.

    Article  Google Scholar 

  29. SP Brühl, R Charadia, S Simison, DG Lamsa, A Cabo. Surf. Coat. Tech. (2010) 204: 3280-3286.

    Article  Google Scholar 

  30. [31]M.T. Shehata, M. Elboujdaini, and R.W. Revie: Safety, Reliability and Risks Associated with Water, Oil and Gas Pipelines. Springer Netherlands, 2008,pp.115-128

    Book  Google Scholar 

  31. [32]Y. Jiang, J.M. Gong, Z.G. Yu, and D.S. Rong: Key Eng. Mat., 2011, vol.479,pp.34-39.

    Article  Google Scholar 

  32. E. Anelli, M. Armengol, P. Novelli, and F. Tintori: US Patent, no. 9598746, 2017.

  33. R.B. Frandsen, T. Christiansen, M.A.J. Somers. Surf. Coat. Tech., 2006, 200: 5160-5169.

    Article  Google Scholar 

  34. M. Monnot, R.P. Nogueira, V. Roche, G. Berthomé,E. Chauveau,R. Estevez, M. Mantel. Appl. Surf. Sci., 2017, 394: 132-141.

    Article  Google Scholar 

  35. [36]G.V. Boven, W. Chen,R. Rogge: Acta Mater., 2007, vol.55,pp.29-42.

    Article  Google Scholar 

  36. [37]W.Chen, G.V. Boven, R. Rogge: Acta Materialia, 2007, vol.55,pp.43-53.

    Article  Google Scholar 

  37. [38]A.H. Heuer, F. Ernst, H. Kahn,A. Avishai,G.M. Michal,D.J. Pitchure,and R.E. Ricker: Scripta Mater., 2007, vol.56,pp.1067-1070.

    Article  Google Scholar 

  38. [39]D. Hoeft, B.A. Latella, and K.T. Short, and J. Phys.: Condens. Matter.,2005, vol. 17, pp. 3547–58.

    Article  Google Scholar 

  39. [40]C.X. Li and T. Bell: Corros. Sci., 2004, vol. 46, pp. 1527–47.

    Article  Google Scholar 

  40. J. Wang, Y.H. Lin,M. X. Li,H.Y. Fan,D.Z. Zeng, J. Xiong: Metall. Mat. Trans. B, 2013, 44(4): 1010-1016.

    Article  Google Scholar 

  41. [42]D. Wang, H. Kahn,J.J Lewandowski,F. Ernst,G.M. Michal,and A.H. Heuer: Mat. Sci. Eng. A, 2012, vol.556,pp.43-50.

    Article  Google Scholar 

  42. [43]Z.Y. Liu, C.F. Dong, X.G. Li, Q. Zhi, and Y.F. Cheng: J. Mater. Sci., 2009, vol.44,pp.4228-4234.

    Article  Google Scholar 

  43. Y.T. Xi, D.X. Liu, D.Han. Surf. Coat. Tech., 2008, 202: 2577-2583.

    Article  Google Scholar 

  44. [45]T. Sunaba, T. Shinohara, Y. Miyata, S. Asakura,T. Yakou,and Y. Tomoe: Zairyo-to-Kankyo, 2014, vol.63,pp.468-474.

    Article  Google Scholar 

  45. K. Osozawa, and N. Okato: Passivity and its Breakdown on Iron and Iron Based Alloys, USA-Japan Seminar, Honolulu, NACE, Houston, TX, 1976, pp.135.

  46. [47]C. O. A. Olsson: Corros Sci, 1995, vol.37(3),pp.467-479.

    Article  Google Scholar 

  47. Y. Fu, X.Q. Wu, E. H. Han, W.K. Ke,K. Yang, Z.H. Jiang: Electrochim. Acta, 2009. 54(5): 1618-1629.

    Article  Google Scholar 

  48. P.R. Levey, and A.R.V. Bennekom: Corrosion, 1995, 51: 911-921.

    Article  Google Scholar 

  49. [50]Y.C. Lu, M.B. Ives, and C.R. Clayton: Corros. Sci., 1993, vol.35,pp.89-96.

    Article  Google Scholar 

  50. R.C. Newman, T. Shahrabi. Corros. Sci., 1987, 27(8): 827-838.

    Article  Google Scholar 

  51. [52]M. Tsujikawa, D. Yoshida, N. Yamauchi, N. Ueda,T. Sone,and S. Tanaka: Surf. Coat.Tech., 2005, vol.200,pp.507-511.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the grant of National Natural Science Foundation of China (Nos. 51471112 and 51611130204) and Science and Technology Planning Project of Sichuan (No. 2016GZ0173) for the financial support of this research. The author (JW) would like to thank H. Dong at the University of Birmingham, UK, for his valuable discussion during the course of the research and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

Manuscript submitted May 4, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, J., Fan, H. et al. Stress Corrosion Behavior of Low-temperature Liquid-Nitrided 316 Austenitic Stainless Steel in a Sour Environment. Metall Mater Trans A 49, 356–367 (2018). https://doi.org/10.1007/s11661-017-4382-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4382-5

Navigation