Skip to main content
Log in

A Crystal Plasticity Approach for Shear Banding in Hot Rolled High-Strength Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A crystal plasticity approach with a phenomenological shear banding mechanism incorporated in a conventional dislocation crystal plasticity model is presented. In the developed framework, the hardening and softening relations are considered both within and between the deformation mechanisms. The study aims to increase the understanding of the importance of hot rolling texture to the shear banding propensity in martensitic steels. In the single crystal simulations performed for selected common rolling textures, it was found that shear band activation and the magnitude of softening are dependent on the initial orientation of the crystal. In general, softening-related shear banding in single crystals was shown to be well reproduced by the model at high plastic strains and high strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anand, L. and C. Su 2005. Journal of the Mechanics and Physics of Solids, 53:1362–1396.

    Article  Google Scholar 

  2. Asaro, R. and J. Rice 1977. Journal of Mechanics and Physics of Solids, 25:309–338.

    Article  Google Scholar 

  3. Bassim, M. and A. Odeshi 2008. Materials Science and Engineering A, 488:235–240.

    Article  Google Scholar 

  4. Batra, R. and L. Chen 2001. International Journal of Plasticity, 17:1465–1489.

    Article  Google Scholar 

  5. Berveiller, M. and A. Zaoui 1979. Journal of the Mechanics and Physics of Solids, 26:325–344.

    Article  Google Scholar 

  6. Besson, J. and R. Foerch 1998. Revue Européenne des Éléments Finis, 7(5):535–566.

    Article  Google Scholar 

  7. Busso, E. 2015. Journal of AerospaceLab, 9(3):1–13.

    Google Scholar 

  8. Cailletaud, G. 1992. International Journal of Plasticity, 8:55–73.

    Article  Google Scholar 

  9. Cailletaud, G. and P. Pilvin 1994. Revue Européenne des Éléments, 3(4):515–541.

    Article  Google Scholar 

  10. Chen, L. and R. Batra 1999. International Journal of Plasticity, 15:551–574.

    Article  Google Scholar 

  11. Dao, M. 2001. Philosophical Magazine, 81(8):1997–2020.

    Article  Google Scholar 

  12. Y. Estrin, L. TA3th, Y. BrAcchet, and H. Kim: Mater. Sci. Forum, 2006, Vol. 304–305, pp. 675–80.

  13. Y. Estrin, L. TA3th, A. Molinari, and Y. BrAcchet: Acta Mater., 1998, Vol. 46, pp. 5509–22.

  14. Forest, S. 1998. Acta Materialia, 46(9):3265–3281.

    Article  Google Scholar 

  15. Forest, S. and G. Cailletaud 1995. European Journal of Mechanics, - A/Solids, 14:747–771.

    Google Scholar 

  16. Guon, Y., B. Chen, J. Zou, T. Britton, J. Jiang, and F. Dunne 2017. International Journal of Plasticity, 88:70–88.

    Article  Google Scholar 

  17. Hines, J., K. Vecchio, and S. Ahzi 1998. Metallurgical and Materials Transactions A, 29:191–203.

    Article  Google Scholar 

  18. Hoc, T. and S. Forest 2001. International Journal of Plasticity, 17:65–85.

    Article  Google Scholar 

  19. Hong, C., N. Tao, X. Huang, and K. Lu 2010. Acta Materialia, 58:3103–3116.

    Article  Google Scholar 

  20. Jia, N., P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao 2012a. Acta Materialia, 90:3415–3434.

    Article  Google Scholar 

  21. Jia, N., D. Raabe, and X. Zhao 2014. Acta Materialia, 76:238–251.

    Article  Google Scholar 

  22. Jia, N., F. Roters, P. Eisenlohr, C. Kords, and D. Raabe 2012b. Acta Materialia, 60:1099–1115.

    Article  Google Scholar 

  23. Jia, N., F. Roters, P. Eisenlohr, D. Raabe, and X. Zhao 2013. Acta Materialia, 61:4591–4606.

    Article  Google Scholar 

  24. Kaijalainen, A., P. Suikkanen, L. Karjalainen, and D. Porter 2016. Materials Science and Engineering A, 654:151–160.

    Article  Google Scholar 

  25. Li, D.-F., R. Barret, P. O’Donoghue, C. Hyde, N. O’Dowd, and S. Leen 2016. International Journal of Fatigue, 87:192–202.

    Article  Google Scholar 

  26. Lindroos, M., M. Apostol, V.-T. Kuokkala, A. Laukkanen, K. Valtonen, K. Holmberg, and O. Oja 2015a. International Journal of Impact Engineering, 78:114–127.

    Article  Google Scholar 

  27. Lindroos, M., V. Ratia, M. Apostol, K. Valtonen, A. Laukkanen, W. Molnar, K. Holmberg, and V.-T. Kuokkala 2015b. Wear, 328-329:197–205.

    Article  Google Scholar 

  28. Lindroos, M., K. Valtonen, A. Kemppainen, A. Laukkanen, K. Holmberg, and V.-T. Kuokkala 2015c. Wear, 322-323:32–40.

    Article  Google Scholar 

  29. Lu, Y., B. Sun, L. Zhao, W. Wang, M. Pan, C. Liu, and Y. Yang 2016. Nature: Scientific Reports, 6(28523):1–12.

    Article  Google Scholar 

  30. MAcric, L. and G. Cailletaud 1991. Journal of Engineering and Materials Technology, 113:171–182.

    Article  Google Scholar 

  31. Mandel, J. 1973. International Journal of Solids and Structures, 9:725–740.

    Article  Google Scholar 

  32. Medyanik, S. N., W. K. Liu, and S. Li 2007. Journal of Mechanics and Physics of Solids, 55:1493–1461.

    Article  Google Scholar 

  33. Meyers, M., V. Nesterenko, J. LaSalvia, and Q. Xue 2001. Materials Science and Engineering A, 317:204–225.

    Article  Google Scholar 

  34. Molinari, A. 1997. Journal of Mechanics and Physics of Solids, 45(9):1551–1575.

    Article  Google Scholar 

  35. Pinna, C., Y. Lan, M. Kiu, P. Efthymiadis, M. Lopez-Pedrosa, and D. Farrugia 2015. International Journal of Plasticity, 73:24–38.

    Article  Google Scholar 

  36. Rittel, D. and S. Osovski 2010. International Journal of Fracture, 162(1):177–185.

    Article  Google Scholar 

  37. Sabnis, P., M. MaziAcre, S. Forest, N. Arakere, and F. Ebrahimi 2012. International Journal of Plasticity, 28:102–123.

    Article  Google Scholar 

  38. Suikkanen, P. and J. Kömi 2014. Materials Science Forum, 783-786:246–251.

    Article  Google Scholar 

  39. Sun, S. and V. Sundararaghavan 2014. International Journal of Solids and Structures, 51:3350–3360.

    Article  Google Scholar 

  40. Tasan, C., J. Hoefnagels, M. Diehl, D. Yan, and F. R. D. Raabe 2014. International Journal of Plasticity, 63:198–210.

    Article  Google Scholar 

  41. Wang, Y., D. Qu, X. Wang, Y. Cao, X. Liao, M. Kawasaki, S. Ringer, Z. Shan, T. Langdon, and J. Shen 2012. Acta Materialia, 60:253–260.

    Article  Google Scholar 

  42. Wei, Y., C. Su, and L. Anand 2006. Acta Materialia, 54:3177–3190.

    Article  Google Scholar 

  43. Zhang, Z., D. Eakins, and F. Dunne 2016. International Journal of Plasticity, 79:192–216.

    Article  Google Scholar 

Download references

Acknowledgments

This study was a part of the DIMECC Breakthrough Steels and Applications (BSA) program funded by Tekes and the participating companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Lindroos.

Additional information

Manuscript submitted April 21, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindroos, M., Laukkanen, A. & Kuokkala, VT. A Crystal Plasticity Approach for Shear Banding in Hot Rolled High-Strength Steels. Metall Mater Trans A 48, 5608–5615 (2017). https://doi.org/10.1007/s11661-017-4285-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4285-5

Navigation