Skip to main content
Log in

Study of MA Effect on Yield Strength and Ductility of X80 Linepipe Steels Weld

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Multipass GMAW (Gas Metal Arc Welding) welding was used to join X80 linepipe materials using two weld metals of slightly different compositions. Welding wires with diameters of 0.984 and 0.909 mm were used while applying the same heat input in each pass. The slight difference in the wire diameters resulted in different HAZ microstructures. The microstructures in the doubly reheated HAZ of both welds were found to contain bainite-ferrite. However, etching also revealed a difference in martensite-austenite (MA) fraction in these reheated zones. The MA exhibited twice the hardness of ferrite when measured by nanoindentation. Tensile testing from the reheated zone of both welds revealed a difference in yield strength, tensile strength and elongation of the transverse weld specimens. In the reheated zone of weld A, (produced with a 0.984 mm wire) a higher fraction of MA was observed, which resulted in higher strength but lower elongation compared to weld B. The ductility of weld A was found severely impaired (to nearly half of weld B) due to formation of closely spaced voids around the MA, along with debonding of MA from the matrix, which occurs just above the yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen and E. Østby, Mater. Sci. Technol. 2012, vol. 28, pp. 1261-68.

    Article  Google Scholar 

  2. F. Matsuda, L. Zhonglin, P. Bernasovsky, K. Ishihara and H. Okada, Weld. Res. Abroad 1993, vol. 39, pp. 24-30.

    Google Scholar 

  3. A Lambert, X Garat, T Sturel, AF Gourgues and A Gingell, Scr. Mater. 2000, vol. 43, pp. 161-66.

    Article  Google Scholar 

  4. C.L. Davis and J.E. King, Metall. Mater. Trans. A 1994, vol. 25A, pp. 563-73.

    Article  Google Scholar 

  5. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda and Y. Matsuda, Acta Metall. 1984, vol. 32, pp. 1779-88.

    Article  Google Scholar 

  6. BC Kim, S Lee, NJ Kim and DY Lee, Metall. Trans. A 1991, vol. 22, pp. 139-49.

    Article  Google Scholar 

  7. Y. Zhong, F. Xiao, J. Zhang, Y. Shan, W. Wang and K. Yang, Acta Mater. 2006, vol. 54, pp. 435-43.

    Article  Google Scholar 

  8. L. Chen, Y. Kang, X. Li, D.Z. Wen and G.M. Liu, J. Univ. Sci. Technol. Beijing 2009, vol. 31, p. 983.

    Google Scholar 

  9. I.R.V. Pedrosa, R.S. de Castro, Y.P. Yadava and R.A.S. Ferreira, Mater. Res. 2013, vol. 16, pp. 489-96.

    Article  Google Scholar 

  10. C.A.N. Lanzillotto and F.B. Pickering, Met. Sci. 1982, vol. 16, pp. 371-382.

    Article  Google Scholar 

  11. T. Tagawa, T. Miyata, S. Aihara and K. Okamoto, J. Iron Steel Inst. Jpn. Ed., 1993, vol. 79, p. 1176.

    Article  Google Scholar 

  12. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.-H. Bae and K. Kim, Metall. Mater. Trans. A 2010, vol. 41A, pp. 329-40.

    Article  Google Scholar 

  13. A. Lambert-Perlade, A.-F. Gourgues, J. Besson, T. Sturel and A. Pineau, Metall. Mater. Trans. A 2004, vol. 35A, pp. 1039-53.

    Article  Google Scholar 

  14. F. Matsuda, Y. Fukada, H. Okada, C. Shiga, K. Ikeuchi, Y. Horii, T. Shiwaku and S. Suzuki, Weld. World 1996, vol. 3, pp. 134-54.

    Google Scholar 

  15. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda and Y. Matsuda, Acta Metall. 1984, vol. 32, pp. 1779-88.

    Article  Google Scholar 

  16. A.P. Coldren, R.L. Cryderman, and M. Semchysen: Steel Strengthening Mechanisms, Ann Arbor, MI 1969, vol. 17.

  17. I. Hrivnak, F. Matsuda, Z. Li, K. Ikeuchi and H. Okada, Trans. JWRI 1992, vol. 21, pp. 241-50.

    Google Scholar 

  18. A.R.H. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor and A.P. Gerlich, J. Mater. Process. Technol. 2015, vol. 226, pp. 272-79.

    Article  Google Scholar 

  19. C.L. Davis and J.E. King, Mater. Sci. Technol. 1993, vol. 9, pp. 8-15.

    Article  Google Scholar 

  20. O.M. Akselsen, Ø. Grong and J.K. Solberg, Mater. Sci. Technol. 1987, vol. 3, pp. 649-55.

    Article  Google Scholar 

  21. X. Li, X. Ma, S.V. Subramanian, C. Shang and R.D.K. Misra, Mater. Sci. Eng. A 2014, vol. 616, pp. 141-47.

    Article  Google Scholar 

  22. A. Lambert, J. Drillet, A.F. Gourgues, T. Sturel and A. Pineau, Science and Technology of Welding and Joining 2000, vol. 5, pp. 168-173.

    Article  Google Scholar 

  23. Ivan Hrivnak, Fukuhisa MATSUDA and Kenji IKEUCHI, Transactions of JWRI 1992, vol. 21, pp. 149-171.

    Google Scholar 

  24. F. Matsuda, K. Ikeuchi, Y. Fukada, Y. Horii, H. Okada, T. Shiwaku, C. Shiga and S. Suzuki, Trans. JWRI 1995, vol. 24, p. 1.

    Google Scholar 

  25. Shyi-Chin Wang and Jer-Ren Yang, Materials Science and Engineering: A 1992, vol. 154, pp. 43-49.

    Article  Google Scholar 

  26. Fukuhisa Matsuda, Kenji Ikeuchi and Jinsun Liao, Transactions of JWRI 1993, vol. 22, pp. 271-79.

    Google Scholar 

  27. George Krauss and Steven W Thompson, ISIJ international 1995, vol. 35, pp. 937-945.

    Article  Google Scholar 

  28. T. Araki, I. Kozasu, H. Tankechi, K. Shibata, M. Enomoto, and H. Tamehiro: Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, pp. 1–100.

  29. H. Okada, K. Ikeuchi, F. Matsuda, and I. Hrivnak: Weld. J., 1995, vol. 9, pp. 621–28.

    Article  Google Scholar 

  30. W.W. Xu, Q.F. Wang, T. Pan, H. Su and C.F. Yang, J. Iron Steel Res. Int. 2007, vol. 14, pp. 234-39.

    Article  Google Scholar 

  31. J. Janovec, M. Takahashi, T. Kuroda and Kenji Ikeuchi, ISIJ International 2000, vol. 40, pp. S44-S48.

    Article  Google Scholar 

  32. Y Li and TN Baker, Materials Science and Technology 2010, vol. 26, pp. 1029-1040.

    Article  Google Scholar 

  33. The James F. Lincoln Arc Welding Foundation: Welding Process, The James F. Lincoln Arc Welding Foundation, Cleveland, 2000.

  34. Zhixiong Zhu, Jian Han and Huijun Li, Metall and Mat Trans A 2015, vol. 46, pp. 5467-75.

    Article  Google Scholar 

  35. A.P. Coldren, V. Biss, and A.J. DeArdo, in Thermomechanical Processing of Microalloyed Austenite, AIME, Pittsburgh, PA, 1981, p. 591.

  36. S.Y. Han, S.Y. Shin, C.-H. Seo, H. Lee, J.-H. Bae, K. Kim, S. Lee and N.J. Kim, Metall. Mater. Trans. A 2009, vol. 40, pp. 1851-62.

    Article  Google Scholar 

  37. Yong Tian, Qun Li, Zhao-dong Wang and Guo-dong Wang, J. of Materi Eng and Perform 2015, vol. 24, pp. 3307-3314.

    Article  Google Scholar 

  38. Y Li, DN Crowther, MJW Green, PS Mitchell and TN Baker, ISIJ international 2001, vol. 41, pp. 46-55.

    Article  Google Scholar 

  39. A Lambert, J Drillet, AF Gourgues, T Sturel and A Pineau, Science and Technology of Welding & Joining 2000, vol. 5, pp. 168-173.

    Article  Google Scholar 

  40. S.V. Subramanian, M. Xiaoping, and L. Collins: in 6th International Pipeline Technology Conference, Ostend, Belgium, Paper, 2013, pp. 1–24.

  41. V Biss and RL Cryderman, Metallurgical and Materials Transactions B 1971, vol. 2, pp. 2267-2276.

    Article  Google Scholar 

  42. SJ Barnard, GDW Smith, M Sarikaya and G Thomas, Scripta Metallurgica 1981, vol. 15, pp. 387-392.

    Article  Google Scholar 

  43. N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor and A.P. Gerlich, Mater. Sci. Eng. A 2016, vol. 662, pp. 481-91.

    Article  Google Scholar 

  44. A.T. Davenport: Formable HSLA and Dual Phase Steels, The Metallurgical Society of AIME, New York, 1979.

  45. J.M. Rigsbee, P.J. Vander Arend, and A.T. Davenport: Formable HSLA and Dual Phase Steels, TMS-AIME, Warrendale, PA, 1979, vol. 56.

  46. D. Tian: Microstructure, Cleavage Fracture and Toughness of Granular Bainite in Simulated Coarse-Grained Heat-Affected Zones of Low-Carbon High-Strength Steels, Oulun Yliopisto, 1998.

Download references

Acknowledgments

The authors wish to acknowledge the Natural Science and Engineering Research Council (NSERC) of Canada for financial support. Further financial support, and the X80 material was provided by TransCanada Pipelines. The authors are grateful to Dr. Yuquan Ding, University of Waterloo for his help in performing nano indentation. The transmission electron microscopy research described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmul Huda.

Additional information

Manuscript submitted January 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huda, N., Lazor, R. & Gerlich, A.P. Study of MA Effect on Yield Strength and Ductility of X80 Linepipe Steels Weld. Metall Mater Trans A 48, 4166–4179 (2017). https://doi.org/10.1007/s11661-017-4171-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4171-1

Navigation