Skip to main content
Log in

On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid–liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (∆T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase (α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of ∆T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, ∆T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence ∆T k, i.e., interface kinetic parameter (μ i ) and solute distribution coefficient (k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Acta Mater., 2009, vol. 57, pp. 941–71.

    Article  Google Scholar 

  2. A.J. Shahani, X.H. Xiao, and P.W. Voorhees: Nat. Commun., 2016, p. 7.

  3. W.J. Yao, Z.P. Ye, N. Wang, X.J. Han, J.Y. Wang, and X.X. Wen: J. Mater. Sci. Technol., 2011, vol. 27, pp. 1077–82.

    Article  Google Scholar 

  4. H.R. Peng, M.M. Gong, Y.Z. Chen, and F. Liu: Int. Mater. Rev., 2017, vol. 62, pp. 303–33.

    Article  Google Scholar 

  5. T.S. Lo, S. Dobler, M. Plapp, A. Karma, and W. Kurz: Acta Mater., 2003, vol. 51, pp. 599–611.

    Article  Google Scholar 

  6. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129–42.

    Google Scholar 

  7. R. Trivedi, P. Magnin, and W. Kurz: Acta Metall., 1987, vol. 35, pp. 971–80.

    Article  Google Scholar 

  8. J.F. Li and Y.H. Zhou: Acta Mater., 2005, vol. 53, pp. 2351–59.

    Article  Google Scholar 

  9. W. Kurz and R. Trivedi: Metall. Trans. A, 1991, vol. 22A, pp. 3051–57.

    Article  Google Scholar 

  10. N. Wang and R. Trivedi: Scripta Mater., 2011, vol. 64, pp. 848–51.

    Article  Google Scholar 

  11. R. Trivedi and N. Wang: Acta Mater., 2012, vol. 60, pp. 3140–52.

    Article  Google Scholar 

  12. P. Magnin and W. Kurz: Acta Metall., 1987, vol. 35, pp. 1119–28.

    Article  Google Scholar 

  13. M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, and W. Kurz: Acta Metall. Mater., 1992, vol. 40, pp. 1637–44.

    Article  Google Scholar 

  14. Y. Cao, X. Lin, Z.T. Wang, Y.O. Yang, and W.D. Huang: Acta Metall. Sinica, 2011, vol. 47, pp. 540–47.

    Google Scholar 

  15. N. Wang, S. David, H. Walker, and R. Trivedi: Trans. Ind. Inst. Met., 2007, vol. 60, pp. 69–73.

    Google Scholar 

  16. J.C. Baker: Ph.D. Thesis, MIT, Cambridge, MA, 1970, http://www.dspace.mit.edu/handle/1721.1/35357.

  17. M. Hillert: Acta Mater., 1999, vol. 47, pp. 4481–4505.

    Article  Google Scholar 

  18. H.F. Wang, F. Liu, H.M. Zhai, and K. Wang: Acta Mater., 2012, vol. 60, pp. 1444–54.

    Article  Google Scholar 

  19. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1158–68.

    Article  Google Scholar 

  20. N. Wang, Y.E. Kalay, and R. Trivedi: Acta Mater., 2011, vol. 59, pp. 6604–19.

    Article  Google Scholar 

  21. A.G. DiVenuti and T. Ando: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 3047–56.

    Article  Google Scholar 

  22. S. Önel and T. Ando: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2449–58.

    Article  Google Scholar 

  23. D.M. Herlach: Mater. Sci. Eng. A, 1994, vols. 179–180A, pp. 147–52

    Article  Google Scholar 

  24. M.J. Li and K. Kuribayashi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2999–3008.

    Article  Google Scholar 

  25. M.J. Aziz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 671–86.

    Article  Google Scholar 

  26. D.M. Herlach: Mater. Sci. Eng. A, 1994, vols. 179–180A, pp. 147–52

    Article  Google Scholar 

  27. S.C. Gill and W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 139–51.

    Google Scholar 

  28. A. Revcolevschi and G.D. Dhalenne: Adv. Mater., 1993, vol. 5, pp. 657–62.

    Article  Google Scholar 

  29. Z. Liu, K. Song, B. Gao, T. Tian, H.O Yang, X. Lin, and W.D. Huang: J. Mater. Sci. Technol., 2016, vol. 32, pp. 320–25.

    Article  Google Scholar 

  30. H. Tan, Y. Zhang, D. Ma, Y.P. Feng, and Y. Li: Acta Mater., 2003, vol. 51, pp. 4551–61.

    Article  Google Scholar 

  31. C.R. Clopet, R.F Cochrane, and A.M. Mullis: Acta Mater., 2013, vol. 61, pp. 6894–02.

    Article  Google Scholar 

  32. R. Goetzinger, M. Barth, and D.M. Herlach: J. Appl. Phys., 1998, vol. 84, pp. 1643–49.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to NSFC of China (Grant Nos. 51101121, 51125002, 51134011, 51431008, and 51371147), the New Century Excellent Person Supporting Project (NCET-13-0470), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU) (Grant No. 146-QZ-2016), and the Shaanxi Young Stars of Science and Technology (Grant No. 2016KJXX-44) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Z. Chen.

Additional information

Manuscript submitted December 22, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Chen, Y.Z., Shan, G.B. et al. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth. Metall Mater Trans A 48, 3823–3830 (2017). https://doi.org/10.1007/s11661-017-4147-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4147-1

Navigation