Skip to main content
Log in

Influence of Tool Rotational Speed and Post-Weld Heat Treatments on Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ. In the as-welded state, the 200 rpm joints have shown room temperature impact toughness close to that of BM, whereas 700 rpm joints exhibited very poor impact toughness. The best combination of microstructure and mechanical properties could be obtained by employing low rotational speed of 200 rpm followed by PWNT cycle. The type and size of various precipitates, grain size, and evolving dislocation substructure have been presented and comprehensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R. L. Klueh and A.T. Nelson: J. Nucl. Mater. 2007, Vol.371, pp.37-52.

    Article  Google Scholar 

  2. V.K. Sikka: Development of Modified 9Cr-1Mo Steel for Elevated Temperature Service, in J.W. Davies and D.J. Michael, eds., Proceedings AIME Topical Conference Ferritic Alloys for Use in Nuclear Energy Technologies, Snowbird, Utah (1983) , pp. 317–27.

  3. J.F. Salavy, I.V. Boccacini, P. Chaudhuri, S. Cho, M. Enoeda, L.M. Ginacarli, R.J. Kurtz, T.Y. Loo, K. Bhanu Sankara Rao, and C.P.C. Wong, Fus. Engr. Des., 2010, Vol.85, pp.1896-1902.

    Article  Google Scholar 

  4. R.L. Klueh, D. S. Gelles, and T.A. Lechtenberg: J. Nucl. Mater, 1986, Vol.141-143, pp.1081-1087.

    Article  Google Scholar 

  5. N. Baluc, D.S. Gelles, S. Jitsukawa, R.L. Klueh, G.R. Odette, B. Van der Schaaf, and J. Yu, J. Nucl. Mater, 2007, Vol 262-370, pp. 33-41.

    Article  Google Scholar 

  6. H. Tanigawa, K. Shiba, A. Möslang, R. E. Stoller, R. Lindau, M. A. Sokolov, G. R. Odette,R. J. Kurtz, and S. Jitsukawa: J. Nucl. Mater, 2011, Vol.417, pp.9-15.

    Article  Google Scholar 

  7. H. Tanigawa, K. Hirose, K. Shiba, R. Kasada, E. Wakai, H. Serizawa, Y. Kawahito, S. Jitsukawa, A. Kimura, Y. Kohno, A. Kohyama, S. Katayama, H. Mori, K. Noshimoto, R. L. Klueh, M. A. Sokolov, R.E. Stoller and S.J. Zinkle: Fus. Engr. Des, 2008, Vol.83, pp. 1471-1476.

    Article  Google Scholar 

  8. J.Yu, Q. Haung and F.Wam, J. Nucl. Mater. 2007, Vol.367-370, pp.97-101.

    Article  Google Scholar 

  9. Q. Haung, C. Li, Y. Li, M. Chen, M. Zhang, and L. Plug: J. Nucl. Mater. 2007, Vol.367-370, pp.142-146.

    Article  Google Scholar 

  10. L. Haung, X.Hu, W. Van, W. Sha, F. Xiao, Y. Shan, and K. Yang, Mater. Des. 2014, Vol.63, pp.333-335.

    Article  Google Scholar 

  11. B. Van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Moeslang, G.R. Odette: J. Nucl. Mater. 2000, Vol.283-287, pp.52-59.

    Article  Google Scholar 

  12. B. Raj, K. Bhanu Sankara Rao, and A.K. Bhaduri, Fus Eng. Des., 2010, Vol. 85, pp.1460-1468.

    Article  Google Scholar 

  13. K. Laha, S. Saroja, A. Moitra, R. Sandhya, M.D. Mathew, T. Jayakumar and E. Rajendrakumar: J. Nucl. Mater. 2013, Vol.439, pp.41-50.

    Article  Google Scholar 

  14. S. Raju, B. Jeyaganesh, A.K. Rai, R. Mythili, S. Saroja, E. Mohandas, M. Vijayalakshmi, K. Bhanu Sankara Rao, and B. Raj: J Nucl Mater, 2009, Vol. 389, pp. 385-393.

    Article  Google Scholar 

  15. K. Laha, K.S. Chandravathi, P. Parameswaran, and K. Bhanu: Metall Mater Trans A, 2009, Vol.40, pp. 386-397.

    Article  Google Scholar 

  16. J.A. Francis, W. Mazur, and H.K.D. H. Bhadeshia: Mater. Sci. Tech., 2006, Vol.22, pp.1387-1395.

    Article  Google Scholar 

  17. S. Shiju, C.R. Das, V. Ramasubbu, S. K. Albert and A. K. Bhaduri: J.Nucl.Mater.,2014, Vol.455, pp.343-348.

    Article  Google Scholar 

  18. J. Wang, S. Lu, W. Dong, D. Li and L. Rong: Mater .Des. 2014, Vol.64, pp.550-558.

    Article  Google Scholar 

  19. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, G.J. Dawes and P. Dawes: Friction stir butt welding (1991), GB Patent No.9125978.8, International Patent No. PCT/GB92/02203.

  20. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R: Reports, 2005,Vol.50, pp.1-78.

    Article  Google Scholar 

  21. P.L. Threadgill, A.J. Leonard, H.R. Schercliff, and P.J. Whithers: Int. Mater. Reviews, 2009, Vol.54, pp. 49-93.

    Article  Google Scholar 

  22. S. Noh, H. Tanigawa, H. Fujii, A. Kimura, J. Shim, and T. K. Kim: Microstructural evolutions of friction stir welded F82H steel for fusion applications, Trans. Korean Nucl. Soc. Autumn Meeting, Gyeongju, Korea,October 25-26, 2012.

    Google Scholar 

  23. Z. Yu, Z. Feng, D. Hoelzer, L. Tan, and M.A. Sokolov: Metall. Mater. Trans E, 2015, Vol.2E, pp.164-172.

    Google Scholar 

  24. W. Tang, J. Chen, X. Yu, D Frederick, and Z. Feng: Heat input and post weld heat treatment effects on reduced activation ferritic martensitic steel friction stir welds, in: R. S. Mishra, M.W. Mahoney, Y. Sato, Y. Hovanski (Eds), Friction stir welding and processing VIII, Wiley, New Jersey 2015, pp 83–88.

    Chapter  Google Scholar 

  25. V.L.Manugula, K.V. Rajulapati, G.M. Reddy, R. Mythili and K. Bhanu: Mater. Design, 2016, Vol. 92, pp.200-212.

    Article  Google Scholar 

  26. S. Saroja, A.Dasgupta, R. Divakar, S. Raju, E. Mohandas, M. Vijayalakshmi and K. Bhanu Sankara Rao: J.Nucl.Mater., 2011, Vol.409, pp.131-139.

    Article  Google Scholar 

  27. R. Ravikirana: Study of Transformation Characteristics and Microstructural Evolution in 9Cr Reduced Activation Ferritic/Martensitic Steel Using Electron Microscopy, Calorimetry and Computational Methods, Ph.D. Thesis, Homi Bhabha National Institute, August 2014.

  28. R. Ravikirana, R. Mythili, S. Raju, S. Saroja, G. Paneerselvam, T. Jayakumar and E. Rajendrakumar: Bull. Mater. Sci., 2014, Vol. 37, pp.1453–1460.

    Article  Google Scholar 

  29. N. A. McPherson, A.M. Galloway, S.R. Cater, and S.J. Hambling: Sci.Technol. Weld. Join, 2013, Vol.18, pp.441-450.

    Article  Google Scholar 

  30. A. Toumpis, A. Galloway, S. Cater,and N. A. McPherson: Mater. Des, 2014, Vol. 62, pp.64-75.

    Article  Google Scholar 

  31. Z. Lu, R.G. Faulkner, N. Riddle, F.D. Martino, and K. Yang, J. Nucl. Mater., 2009, Vol.386-388, pp. 445-48.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Professor I. Samajdar (IIT, Bombay), Dr. M. Vijayalakshmi, and Dr. S. Saroja (IGCAR, Kalpakkam) for many useful discussions. Professor K. Bhanu Sankara Rao is particularly thankful to Ministry of Steel, Government of India for providing Ministry of Steel Chair Professorship. This research is supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koteswararao V. Rajulapati.

Additional information

Manuscript submitted July 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manugula, V.L., Rajulapati, K.V., Reddy, G.M. et al. Influence of Tool Rotational Speed and Post-Weld Heat Treatments on Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel. Metall Mater Trans A 48, 3702–3720 (2017). https://doi.org/10.1007/s11661-017-4143-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4143-5

Navigation