Skip to main content
Log in

Effect of Tool Rotational Speed on Friction Stir Welding of ASTM A516-70 Steel Using W–25%Re Alloy Tool

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

W–25%Re tool was used to friction stir weld ASTM A516-70 steel. This paper presents the results of studying the effects of rotational speed on tool reaction loads, tool wear, weld defects, and weld microstructure. The measured tool axial forces profile were found to be strongly coupled with the weld surface features. At high values of rotational speed, weld microstructure examinations revealed a wide heat-affected zone, coarse grains, and partial dissolving of ferrite and pearlite. These are attributed to the excessive heat generation at high levels of rotational speeds. Stir zone grain refinement occurred at all levels of rotational speeds under investigation, with the finest grains occurring at lower values of the rotational speeds. W–25%Re tool demonstrated excellent wear resistance at low rotational speed. However, at high values of rotational speeds fluctuating loads and high heat input resulted in excessive wear of the tool. Greater amount of wear took place at the tool shoulder, which experienced 50% reduction in the tool shoulder shank. Moreover, elemental diffusion of tungsten occurred into the weld and was found to increase with the increase in tool rotational speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, W.M.; Nicholas, E.D.; Needhan, J.C.; Murch, M.G.; Temple-Smith, P.; Dawes, C.J.: International patent application PCT/GB92/02203 and GB patent application 9125978.8. UK Patent Office, London, 6 (1991)

  2. Prabhu, S.; Shettigar, A.K.; Rao, K.; Rao, S.; Herbert, M.: Influence of welding process parameters on microstructure and mechanical properties of friction stir welded aluminium matrix composite. Mater. Sci. Forum 880, 50–53 (2017)

    Article  Google Scholar 

  3. Mishra, R.S.; De, P.S.; Kumar, N.: Friction Stir Welding and Processing, Science and Engineering. Springer, London (2014)

    Google Scholar 

  4. Fènoël, M.A.; Simar, A.: A review about friction stir welding of metal matrix composites. Mater. Charact. 120, 1–17 (2016)

    Article  Google Scholar 

  5. Park, S.H.C.; Sato, Y.S.; Kokawa, H.; Okamoto, K.; Hirano, S.; Inagaki, M.: Boride formation induced by pcBN tool wear in friction-stir-welded stainless steels. Metall. Mater. Trans. A 40(3), 625–636 (2009)

    Article  Google Scholar 

  6. Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T.: Review: friction stir welding tools. Sci. Technol. Weld. Join. 16(4), 325–342 (2011)

    Article  Google Scholar 

  7. Shirazi, H.; Kheirandish, S.; Safarkhanian, M.A.: Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy. Measurement 76, 62–69 (2015)

    Article  Google Scholar 

  8. Thompson, B.: Tungsten-based tool material development for the friction stir welding of hard metals. In: Friction Stir Welding and Processing VI, pp. 105–112

  9. Buffa, G.; Fratini, L.; Micari, F.; Settineri, L.: On the choice of tool material in friction stir welding of titanium alloys. In: Transaction of North American Manufacturing Research Conference of SME June 4–8, 2012 Notre Dame, pp. 785–794. Indiana, USA (2012)

  10. Iqbal, Z.; Saheb, N.; Shuaib, A.R.: W–25%Re–HfC composite materials for pin tool material applications: synthesis and consolidation. J. Alloys Compd. 674, 189–199 (2016)

    Article  Google Scholar 

  11. Iqbal, Z.; Merah, N.; Saheb, N.; Shuaib, A.R.; Aqeeli, A.N.: Investigation of wear characteristics of spark plasma sintered W–25wt%Re alloy and W–25wt%Re–3.2wt%HfC composite. Tribol. Int. 116, 129–137 (2017)

    Article  Google Scholar 

  12. Hsieh, M.J.; Chiou, Y.C.; Lee, R.T.: Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool. J. Mater. Process. Technol. 224, 149–155 (2015)

    Article  Google Scholar 

  13. Lienert, T.J.; Stellwag Jr., W.L.; Grimmett, B.B.; Warke, R.W.: Friction stir welding studies on mild steel. Weld. J. N. Y. 82(1), 1–9 (2003)

    Google Scholar 

  14. Bilgin, M.B.; Meran, C.: The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Mater. Des. 33, 376–383 (2012)

    Article  Google Scholar 

  15. Barnes, S.J.; Bhatti, A.R.; Steuwer, A.; Johnson, R.; Altenkirch, J.; Withers, P.J.: Friction stir welding in HSLA-65 steel: Part I. Influence of weld speed and tool material on microstructural development. Metall. Mater. Trans. A 43(7), 2342–2355 (2012)

    Article  Google Scholar 

  16. Schmidt, H.; Hattel, J.; Wert, J.: An analytical model for the heat generation in friction stir welding. Modell. Simul. Mater. Sci. Eng. 12(1), 143 (2003)

    Article  Google Scholar 

  17. Al-Badour, F.A.; Merah, N.; Shuaib, A.; Bazoune, A.: Experimental investigation of friction stir seal welding of tube-tubesheet joints. J. Press. Vessel Technol. 137(1), 011402 (2015)

    Article  Google Scholar 

  18. Shuaib, A.R.; Al-Badour, F.; Merah, N.: Friction stir seal welding (FSSW) tube-tubesheet joints made of steel. In: ASME 2015 Pressure Vessels and Piping Conference, pp. V06BT06A005–V06BT06A005. American Society of Mechanical Engineers (2015)

  19. European Standard: Friction Stir Welding Aluminium Part 1: Vocabulary (ISO 25239–1:2011). European Committee for Standardization, CEN (2011)

  20. Zhang, Z.; Zhang, H.W.: Solid mechanics-based Eulerian model of friction stir welding. Int. J. Adv. Manuf. Technol. 72(9–12), 1647–1653 (2014)

    Article  Google Scholar 

  21. Bastier, A.; Maitournam, M.H.; Van Dang, K.; Roger, F.: Steady state thermomechanical modelling of friction stir welding. Sci. Technol. Weld. Join. 11(3), 278–288 (2006)

    Article  MATH  Google Scholar 

  22. Jun, C.K.; Hoch, M.: Thermal conductivity of tantalum, tungsten, rhenium, tantalum-10 tungsten, t (111), t (222), tungsten-25 rhenium alloys in the temperature range 1500–2800 k. Cincinnati Univ of Materials Science Program (1966)

  23. Wade, M.; Reynolds, A.P.: Friction stir weld nugget temperature asymmetry. Sci. Technol. Weld. Join. 15, 64–39 (2013)

    Article  Google Scholar 

  24. Al-Badour, F.; Merah, N.; Shuaib, A.; Bazoune, A.: Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int. J. Adv. Manuf. Technol. 72(5–8), 607–617 (2014)

    Article  Google Scholar 

  25. Linnert, G.E.: Welding Metallurgy, Carbon and Alloy Steels, Vol. 1. Fundamentals. American Welding Society, Welding Metallurgy, Carbon and Alloy Steels, 1, 940 (1994)

  26. Hughes, K.E.; Nair, K.D.; Sellars, C.M.: Temperature and flow stress during the hot extrusion of steel. Met. Technol. 1, 161–169 (2013)

    Article  Google Scholar 

  27. ASTM E384-17: Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken. www.astm.org (2017)

  28. Pradeep, A.; Muthukumaran, S.: Two modes of metal transfer phenomenon in friction stir welding of low alloy steel plates. In: Proceedings of the 1st International Joint Symposium on Joining and Welding: Osaka, Japan, 6–8 Nov 2013, p. 305. Woodhead Publishing (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Al-Badour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Z., Bazoune, A., Al-Badour, F. et al. Effect of Tool Rotational Speed on Friction Stir Welding of ASTM A516-70 Steel Using W–25%Re Alloy Tool. Arab J Sci Eng 44, 1233–1242 (2019). https://doi.org/10.1007/s13369-018-3452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3452-3

Keywords

Navigation