Skip to main content
Log in

Enhancement of Thermoelectric Behavior of La0.5Co4Sb12−x Te x Skutterudite Materials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the effects of Te doping on the microstructure and thermoelectric properties of the partially filled skutterudite La0.5Co4Sb12 compounds have been examined. La0.5Co4Sb12−x Te x skutterudite compounds were synthesized by a combination of the mechanical alloying technique and spark plasma sintering processing, which resulted in partial substitution of Te atoms in Sb sites. The XRD results showed that all the Te-doped bulk samples were composed of a major phase of the Co4Sb12 skutterudite with a small amount of CoSb2 and Sb as the secondary phases. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300 K to 800 K (27 °C to 527 °C). With the La0.5Co4Sb11.7Te0.3 sample, the highest absolute Seebeck coefficient of 300 μV/K was obtained at 404 K (131 °C) and the lowest lattice thermal conductivity of 2 W/mK was achieved at 501 K (228 °C). Moreover, the minimum electrical resistivity of 19.7 μΩm was recorded at 501 K (228 °C) for La0.5Co4Sb11.5Te0.5 sample. The effect of the secondary phases was negligible for the electrical resistivity, and between 0.5 to 1.6 pct for the thermal conductivity. Thus, the highest figure of merit, ZT = 0.47, was obtained at 792 K (519 °C) for La0.5Co4Sb11.5Te0.5 sample due to a significant reduction in electrical resistivity and a moderate increase in the absolute Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. J. Snyder, and E. S. Toberer: Nat Mater. 2008, vol. 7, PP. 105 - 114.

    Article  Google Scholar 

  2. J. H. Yang, and F. R. Stabler: J. Electron. Mater., 2009, vol. 38, PP. 1245-1251.

    Article  Google Scholar 

  3. M. B. A. Bashir, S. M. Said, M. F. M. Sabri, D. A. Shnawah, and M. H. Elsheikh: Renew. Sust. Energ Rev. 2014, vol. 37, PP. 569-584.

    Article  Google Scholar 

  4. E. Visnow, C. P. Heinrich, A. Schmitz, J. de Boor, P. Leidich, B. Klobes, R. P. Hermann, W. E. Muller, and W. Tremel: Inorg. Chem., 2015, vol. 54, PP. 7818-7827.

    Article  Google Scholar 

  5. D. M. Rowe, Thermoelectrics handbook: macro to nano, CRC press, Boca Raton, 2005.

    Book  Google Scholar 

  6. K. I. M. Il-Ho, P. Kwan-Ho, U. Soon-Chul, C. Soon-Mok, and S. Won-Seon: J Korean Phys Soc. 2010, vol. 57, PP. 1000.

    Article  Google Scholar 

  7. M. H. Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir, and M. Mohamad: Renew. Sust. Energ Rev. 2014, vol. 30, PP. 337-355.

    Article  Google Scholar 

  8. D. N. Truong, H. Kleinke, and F. Gascoin: Dalton Trans. 2014, vol. 43, PP. 15092-15097.

    Article  Google Scholar 

  9. K. Liu, X. Dong, and Z. Jiuxing: Mater. Chem. Phys., 2006, vol. 96, PP. 371-375.

    Article  Google Scholar 

  10. K.-H. Park, S. Lee, W.-S. Seo, S. Baek, D.-K. Shin, and I.-H. Kim: J Korean Phys Soc. 2014, vol. 64, PP. 1004-1008.

    Article  Google Scholar 

  11. J. Yang, Y. Chen, W. Zhu, J. Peng, S. Bao, X. a. Fan, and X. Duan: J. Solid State Chem., 2006, vol. 179, PP. 212-216.

    Article  Google Scholar 

  12. P. Jiangying, Y. Junyou, B. Siqian, W. Yanli, and Z. Tongjun: Rare Metal Mat Eng. 2008, vol. 37, PP. 2177-2180.

    Article  Google Scholar 

  13. X. L. Song, J. Y. Yang, J. Y. Peng, Y. H. Chen, W. Zhu, and T. J. Zhang: J Alloy Compd. 2005, vol. 399, PP. 276-279.

    Article  Google Scholar 

  14. L. Deng, H. A. Ma, T. C. Su, F. R. Yu, Y. J. Tian, Y. P. Jiang, N. Dong, S. Z. Zheng, and X. Jia: Mater. Lett., 2009, vol. 63, PP. 2139-2141.

    Article  Google Scholar 

  15. D. G. Zhao, H. R. Geng, and X. Y. Teng: Intermetallics. 2012, vol. 26, PP. 31-35.

    Article  Google Scholar 

  16. B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A. K. Srivastava, S. Singh, R. C. Budhani, and A. Dhar: Nano Energy. 2015, vol. 13, PP. 36-46.

    Article  Google Scholar 

  17. Z.-H. Zhang, Z.-F. Liu, J.-F. Lu, X.-B. Shen, F.-C. Wang, and Y.-D. Wang: Scripta Mater. 2014, vol. 81, PP. 56-59.

    Article  Google Scholar 

  18. J. Wu, F. Chen, Q. Shen, J. M. Schoenung, and L. Zhang: J. Nanomater. 2013, vol. 2013, PP. 1-7.

    Google Scholar 

  19. K. T. Wojciechowski: Mater Res Bull. 2002, vol. 37, PP. 2023-2033.

    Article  Google Scholar 

  20. J. F. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, CRC Materials Science and Engineering Handbook, 3 rd ed., CRC press, Boca Raton, 2015.

    Google Scholar 

  21. J. Peng, J. Yang, S. Bao, Y. Wang, and T. Zhang: Rare Metal Mat Eng. 2008, vol. 37, PP. 2177-2180.

    Article  Google Scholar 

  22. B. Duan, P. Zhai, L. Liu, Q. Zhang, and X. Ruan: J. Solid State Chem. 2012, vol. 193, PP. 8-12.

    Article  Google Scholar 

  23. P. G. Klemens: J. Appl. Phys. 1991, vol. 70, PP. 4322-4325.

    Article  Google Scholar 

  24. J. Penn, and E. Miller: J. Appl. Phys. 1973, vol. 44, PP. 177-179.

    Article  Google Scholar 

  25. Y. Goto, S. Miyao, Y. Kamihara, and M. Matoba: AIP Adv. 2015, vol. 5, PP. 067147.

    Article  Google Scholar 

  26. C. Chubilleau, B. Lenoir, P. Masschelein, A. Dauscher, C. Candolfi, E. Guilmeau, and C. Godart: J. Mater Sci. 2013, vol. 48, PP. 2761-2766.

    Article  Google Scholar 

  27. H. Muta, K. Kurosaki, M. Uno, and S. Yamanaka: J Alloy Compd. 2003, vol. 359, PP. 326-329.

    Article  Google Scholar 

  28. D. Wee, B. Kozinsky, N. Marzari, and M. Fornari: Phys Rev B. 2010, vol. 81, PP. 045204.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Malaya Postgraduate Research Grant PPP (Grant No. PG080/2014A), University of Malaya Research Grant (Grant Nos. RP023B/13AET and RP023C/13AET), and the Fundamental Research Grant Scheme (Grant No. FP022/2014B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Faizul Mohd Sabri.

Additional information

Manuscript submitted July 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, S.M., Bashir, M.B.A., Sabri, M.F.M. et al. Enhancement of Thermoelectric Behavior of La0.5Co4Sb12−x Te x Skutterudite Materials. Metall Mater Trans A 48, 3073–3081 (2017). https://doi.org/10.1007/s11661-017-4058-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4058-1

Keywords

Navigation