Skip to main content
Log in

Coarsening With Low Pèclet Number Convective Transport Due to Sedimentation

  • Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Coarsening occurs in virtually all multiphase materials. Simulations of coarsening that employ a solution to the multiparticle diffusion problem provide accurate predictions of the coarsening process at low volume fractions of coarsening phase. However, during coarsening in systems where the matrix is a liquid, it is possible for the particles to sediment due to a density difference between the solid and liquid. We have modified a treatment of multiparticle diffusion to include the effects of slowly moving particles on the coarsening process, specifically the limit of very low Pèclet number where the diffusion still controls the ripening process. The model shows an excellent agreement with coarsening experiments in which the particles experience low Pèclet number convection introduced by sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids, 1961, 19(1–2), pp. 35–50.

    Article  Google Scholar 

  2. C. Wagner, Z. Elektrochem., 65, 581 (1961)

    Google Scholar 

  3. A. Brailsford, P. Wynblatt, Acta Metall., 1979, 27 (3), pp. 489–497.

    Article  Google Scholar 

  4. J. A. Marqusee, J. Ross, J. Chem. Phys., 1984 80 (1), pp. 536.

    Article  Google Scholar 

  5. M. Tokuyama, K. Kawasaki, Y. Enomoto, Phys. A, 1986, 134 (2), pp. 323–338.

    Article  Google Scholar 

  6. J. Yao, K. Elder, H. Guo, M. Grant, Phys. Rev. B, 1993, 47 (21), pp. 14110–14125.

    Article  Google Scholar 

  7. M. Marder, Phys. Rev. Lett., 1985, 55 (27), pp. 2953–2956.

    Article  Google Scholar 

  8. P. Voorhees, M. Glicksman, Acta Metall., 1984, 32 (11), pp. 2013-2030.

    Article  Google Scholar 

  9. P. Voorhees, M. Glicksman, Acta Metall. 1984, 32 (11), pp. 2001-2011.

    Article  Google Scholar 

  10. T. Abinandanan, W. Johnson, J. Mater. Sci. Eng. B, 1995, 32 (3), pp. 169–176.

    Article  Google Scholar 

  11. N. Akaiwa, P. Voorhees, Phys. Rev. E., 1994, 49.5, pp. 3860.

    Article  Google Scholar 

  12. J. Zhu, T. Wang, A. Ardell, S. Zhou, Z. Liu, L. Chen, Acta Mat., 2004, 52 (9), 2837–2845.

    Article  Google Scholar 

  13. L. Ratke, W. Thieringer, Acta Metall., 1985, 33 (10), pp. 1793-1802.

    Article  Google Scholar 

  14. W. Thieringer, L. Ratke, Acta Metall., 1987, 35 (6), pp. 1237-1244.

    Article  Google Scholar 

  15. G. Wan, P. Sahm, Acta Metall. Mater., 1990, 38 (6), pp. 967-972.

    Article  Google Scholar 

  16. N. Akaiwa, S. Hardy, P. Voorhees, Acta Metall. Mater., 1991, 39(11), pp. 2931-2942..

    Article  Google Scholar 

  17. H.-J. Diepers, C. Beckermann, I. Steinbach, Acta Mat., 1999, 47 (13), pp. 3663 - 3678.

    Article  Google Scholar 

  18. J. D. Thompson, E. B. Gulsoy, P. W. Voorhees, Acta Mat., 2015, 100, pp. 282 - 289.

    Article  Google Scholar 

  19. E. Gulsoy, K. Wittman, J. Thompson, P. Voorhees, 49th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 2011.

  20. S. Hardy, G. McFadden, S. Coriell, P. Voorhees, R. Sekerka, J. Cryst. Growth, 1991, 114 (3), pp. 467-480.

    Article  Google Scholar 

  21. Bachelor, GK, J. Fluid Mech., 1982, 119, pp. 379-408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Voorhees.

Additional information

Manuscript submitted March 28, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, J., Voorhees, P.W. Coarsening With Low Pèclet Number Convective Transport Due to Sedimentation. Metall Mater Trans A 48, 2714–2719 (2017). https://doi.org/10.1007/s11661-017-3959-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3959-3

Keywords

Navigation