Skip to main content

Advertisement

Log in

Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With electron backscatter diffraction and transmission electron microscopy, we study the rate of grain refinement and the uniformity in the evolution of microstructure in commercial purity Cu samples during high-pressure double torsion (HPDT). We aim to identify the processing conditions that would produce a microstructure that is both refined and uniform across the sample in grain size, texture, and intra-granular misorientation with minimal energy input. Two processing variables, pressure and number of turns, are probed. To provide a reference for HPDT, the investigation is also carried out using the standard high-pressure torsion (HPT) technique. For both processes, grain sizes decrease with the number of turns and applied pressure. Under pressure of 600 MPa and 4 torsional turns, HPDT provided a more homogeneous grain structure than HPT. Likewise, we also demonstrate that for the same processing condition, HPDT again produces the more homogeneous grain structure. It is found that a more homogeneous grain structure is achieved after doubling number of turns than doubling the pressure amount to 1.2 GPa. However, the rate of grain refinement substantially increases with doubling the pressure. Considering these results, the HPDT process, compared to HPT, takes better advantage of the role that high pressure plays in shear strain-induced grain refinement and homogenizing the microstructure. Last, analysis of the applied work finds that the least amount of work required for achieving fine and homogeneous microstructure occurs when the applied pressure is maximized and number of turns is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. L. Jiang, M.T. Pérez-Prado, P.A. Gruber, E. Arzt, O.A. Ruano and M.E. Kassner: Acta. Mater., 2008, vol. 56, pp. 1228-42.

    Article  Google Scholar 

  2. 2. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta. Mater., 1999, vol. 47, pp. 579-83.

    Article  Google Scholar 

  3. 3. R. Valiev: Nat. Mater., 2004, vol. 3, pp. 1476-22.

    Article  Google Scholar 

  4. 4. Q. Xue, I.J. Beyerlein, D.J. Alexander and G.T. Gray III: Acta. Mater., 2007, vol. 55, pp. 655-68.

    Article  Google Scholar 

  5. 5. B.Z. Cui, K. Han, Y. Xin, D.R. Waryoba and A.L. Mbaruku: Acta Mater., 2007, vol. 55, pp. 4429-38.

    Article  Google Scholar 

  6. 6. K. Raeissi, A. Saatchi, M.A. Golozar, A. Tufani and J.A. Szpunar: Electrochimica Acta, 2008, vol. 53, pp. 4674-78.

    Article  Google Scholar 

  7. 7. K. Schüler, B. Philippi, M. Weinmann, V.M. Marx and H. Vehoff: Acta Mater., 2013, vol. 61, pp. 3945-55.

    Article  Google Scholar 

  8. 8. H. Alimadadi, A.B. Fanta, T. Kasama, M.A.J. Somers and K. Pantleon: Surf. Coat. Technol., 2016, vol. 299, pp. 1-6.

    Article  Google Scholar 

  9. 9. J.R.R. Bortoleto, M. Chaves, A.M. Rosa, E.P. da Silva, S.F. Durrant, L.D. Trino and P.N. Lisboa-Filho: Appl. Surf. Sci., 2015, vol. 334, pp. 210-15.

    Article  Google Scholar 

  10. C.L. Azanza Ricardo, M. Pastorelli, M. D’Incau, P. Aswath and P. Scardi: Thin Solid Films, 2016, vol. 605, pp. 169-72.

    Article  Google Scholar 

  11. 11. A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  Google Scholar 

  12. 12. M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon: J. Mater. Sci., 2001, vol. 36, pp. 2835-43.

    Article  Google Scholar 

  13. 13. H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian and M. Knezevic: Mater. Sci. Eng. A, 2016, vol. 670, pp. 205-16.

    Article  Google Scholar 

  14. 14. H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian and M. Knezevic: Mater. Des., 2016, vol. 106, pp. 112-19.

    Google Scholar 

  15. 15. M. Knezevic, M. Jahedi, Y.P. Korkolis and I.J. Beyerlein: Comput. Mater. Sci., 2014, vol. 95, pp. 63-73.

    Article  Google Scholar 

  16. 16. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-83.

    Article  Google Scholar 

  17. 17. M. Ardeljan, D.J. Savage, A. Kumar, I.J. Beyerlein and M. Knezevic: Acta. Mater., 2016, vol. 115, pp. 189-203.

    Article  Google Scholar 

  18. 18. M. Knezevic, T. Nizolek, M. Ardeljan, I.J. Beyerlein, N.A. Mara and T.M. Pollock: Int. J. Plast., 2014, vol. 57, pp. 16-28.

    Article  Google Scholar 

  19. 19. J.S. Carpenter, T. Nizolek, R.J. McCabe, M. Knezevic, S.J. Zheng, B.P. Eftink, J.E. Scott, S.C. Vogel, T.M. Pollock, N.A. Mara and I.J. Beyerlein: Acta. Mater., 2015, vol. 92, pp. 97-108.

    Article  Google Scholar 

  20. 20. M. Ardeljan, I.J. Beyerlein and M. Knezevic: J. Mech. Phys. Solids, 2014, vol. 66, pp. 16-31.

    Article  Google Scholar 

  21. 21. M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara and T.M. Pollock: Int. J. Plast., 2015, vol. 74, pp. 35-57.

    Article  Google Scholar 

  22. 22. M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara and T.M. Pollock: Mater. Res. Lett., 2013, vol. 1, pp. 133-40.

    Article  Google Scholar 

  23. 23. M. Jahedi, M.H. Paydar, S. Zheng, I.J. Beyerlein and M. Knezevic: Mater. Sci. Eng. A, 2014, vol. 611, pp. 29-36.

    Article  Google Scholar 

  24. 24. M. Jahedi, M.H. Paydar and M. Knezevic: Mater. Charact., 2015, vol. 104, pp. 92-100.

    Article  Google Scholar 

  25. 25. M. Jahedi, M. Ardeljan, I.J. Beyerlein, M.H. Paydar and M. Knezevic: J. Appl. Phys., 2015, vol. 117, p. 214309.

    Article  Google Scholar 

  26. 26. D.H. Smith, J. Bicknell, L. Jorgensen, B.M. Patterson, N.L. Cordes, I. Tsukrov and M. Knezevic: Mater. Charact., 2016, vol. 113, pp. 1-9.

    Article  Google Scholar 

  27. S. Gribbin, J. Bicknell, L. Jorgensen, I. Tsukrov and M. Knezevic: Int. J. Fatigue, 2016, vol. 93, pp. 156-67.

    Article  Google Scholar 

  28. 28. B. Mani, M. Jahedi and M.H. Paydar: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4159-65.

    Article  Google Scholar 

  29. 29. B. Mani, M. Jahedi and M.H. Paydar: Powder Technol., 2012, vol. 219, pp. 1-8.

    Article  Google Scholar 

  30. 30. M. Jahedi and M.H. Paydar: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8742-49.

    Article  Google Scholar 

  31. 31. M. Jahedi and M.H. Paydar: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5273-79.

    Article  Google Scholar 

  32. 32. M.I.A. El Aal, E.Y. Yoon and H.S. Kim: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2581-90.

    Article  Google Scholar 

  33. 33. J. Tao, G. Chen, W. Jian, J. Wang, Y. Zhu, X. Zhu and T.G. Langdon: Mater. Sci. Eng. A, 2015, vol. 628, pp. 207-15.

    Article  Google Scholar 

  34. 34. W. Wei, S.L. Wang, K.X. Wei, I.V. Alexandrov, Q.B. Du and J. Hu: J. Alloys Compd., 2016, vol. 678, pp. 506-10.

    Article  Google Scholar 

  35. 35. P. Bridgman: J. Appl. Phys., 1943, vol. 14, pp. 273-83.

    Article  Google Scholar 

  36. P.W. Bridgman: Studies in large plastic flow and fracture. (McGraw-Hill, New York, 1952).

    Google Scholar 

  37. 37. M. Jahedi, M. Knezevic and M.H. Paydar: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1471-82.

    Article  Google Scholar 

  38. 38. J. Wongsa-Ngam, M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7782-88.

    Article  Google Scholar 

  39. 39. A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset and T.G. Langdon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4864-69.

    Article  Google Scholar 

  40. 40. J. Stráská, M. Janeček, J. Gubicza, T. Krajňák, E.Y. Yoon and H.S. Kim: Mater. Sci. Eng. A, 2015, vol. 625, pp. 98-106.

    Article  Google Scholar 

  41. 41. H.Y. Zhang, C.T. Wang, Y.C. Wang, S.K. Li, H. Zou and T.G. Langdon: J. Mater. Sci., 2015, vol. 50, pp. 1535-43.

    Article  Google Scholar 

  42. 42. A. Zhilyaev, S. Lee, G. Nurislamova, R. Valiev and T. Langdon: Scr. Mater., 2001, vol. 44, pp. 2753-58.

    Article  Google Scholar 

  43. 43. Y. Song, E.Y. Yoon, D.J. Lee, J.H. Lee and H.S. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4840-44.

    Article  Google Scholar 

  44. 44. F. Wetscher, A. Vorhauer and R. Pippan: Mater. Sci. Eng. A, 2005, vol. 410, pp. 213-16.

    Article  Google Scholar 

  45. 45. C. Xu, Z. Horita and T.G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7286-92.

    Article  Google Scholar 

  46. 46. C.T. Wang, A.G. Fox and T.G. Langdon: J. Mater. Sci., 2014, vol. 49, pp. 6558-64.

    Article  Google Scholar 

  47. 47. V. Zilbershtein, N. Chistotina, A. Zharov, N. Grishina and E. Estrin: Fizika Metallov i Metallovedenie, 1975, vol. 39, pp. 445-47.

    Google Scholar 

  48. 48. M.T. Pérez-Prado, A. Gimazov, O.A. Ruano, M. Kassner and A. Zhilyaev: Scr. Mater., 2008, vol. 58, pp. 219-22.

    Article  Google Scholar 

  49. 49. A. Zhilyaev, F. Gálvez, A. Sharafutdinov and M. Pérez-Prado: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3918-28.

    Article  Google Scholar 

  50. 50. Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 4733-41.

    Article  Google Scholar 

  51. 51. Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317-31.

    Article  Google Scholar 

  52. M. Nemoto, Z. Horita, M. Furukawa, and T.G. Langdon: in Materials Science Forum, Trans Tech Publication, Zurich, 1999, pp 59–66.

  53. 53. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59-67.

    Article  Google Scholar 

  54. 54. F. Kang, J.Q. Liu, J.T. Wang and X. Zhao: Adv. Eng. Mater., 2010, vol. 12, pp. 730-34.

    Article  Google Scholar 

  55. 55. R. Lapovok, D. Tomus and C. Bettles: Scr. Mater., 2008, vol. 58, pp. 898-901.

    Article  Google Scholar 

  56. 56. R.Y. Lapovok: J. Mater. Sci., 2005, vol. 40, pp. 341-46.

    Article  Google Scholar 

  57. 57. R. Lapovok, D. Tomus and B.C. Muddle: Mater. Sci. Eng. A, 2008, vol. 490, pp. 171-80.

    Article  Google Scholar 

  58. 58. P. Mckenzie and R. Lapovok: Acta Mater., 2010, vol. 58, pp. 3212-22.

    Article  Google Scholar 

  59. 59. R. Islamgaliev, F. Chmelik and R. Kuzel: Mater. Sci. Eng. A, 1997, vol. 234, pp. 335-38.

    Article  Google Scholar 

  60. 60. A. Zhilyaev, K. Oh-Ishi, T. Langdon and T. McNelley: Mater. Sci. Eng. A, 2005, vol. 410, pp. 277-80.

    Article  Google Scholar 

  61. 61. A. Zhilyaev, T. McNelley and T. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 1517-28.

    Article  Google Scholar 

  62. 62. A. Zhilyaev, G. Nurislamova, B.-K. Kim, M. Baró, J. Szpunar and T. Langdon: Acta. Mater., 2003, vol. 51, pp. 753-65.

    Article  Google Scholar 

  63. 63. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty and S.R. Kalidindi: Acta. Mater., 2010, vol. 58, pp. 6230-42.

    Article  Google Scholar 

  64. 64. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams and M. Knezevic: Int. J. Plast., 2016, vol. 83, pp. 90-109.

    Article  Google Scholar 

  65. 65. M. Knezevic, R.J. McCabe, C.N. Tomé, R.A. Lebensohn, S.R. Chen, C.M. Cady, G.T. Gray Iii and B. Mihaila: Int. J. Plast., 2013, vol. 43, pp. 70-84.

    Article  Google Scholar 

  66. 66. M. Knezevic, J.S. Carpenter, M.L. Lovato and R.J. McCabe: Acta. Mater., 2014, vol. 63, pp. 162-68.

    Article  Google Scholar 

  67. 67. M. Knezevic, I.J. Beyerlein, M.L. Lovato, C.N. Tomé, A.W. Richards and R.J. McCabe: Int. J. Plast., 2014, vol. 62, pp. 93-104.

    Article  Google Scholar 

  68. 68. M. Knezevic, M. Zecevic, I.J. Beyerlein, A. Bhattacharyya and R.J. McCabe: JOM, 2015, vol. 67, pp. 2670-74.

    Article  Google Scholar 

  69. 69. A. Bhattacharyya, M. Knezevic and M. Abouaf: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1085-96.

    Article  Google Scholar 

  70. 70. M. Zecevic, M. Knezevic, I.J. Beyerlein and R.J. McCabe: Mater. Sci. Eng. A, 2016, vol. 665, pp. 108-24.

    Article  Google Scholar 

  71. 71. M. Zecevic, M. Knezevic, I.J. Beyerlein and R.J. McCabe: J. Nucl. Mater., 2016, vol. 473, pp. 143-56.

    Article  Google Scholar 

  72. 72. M. Jahedi, M.H. Paydar, S. Zheng, I.J. Beyerlein and M. Knezevic: Mater. Sci. Eng. A, 2014, vol. 611, pp. 29-36.

    Article  Google Scholar 

  73. 73. M. Jahedi, M. Knezevic and M. Paydar: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1471-82.

    Article  Google Scholar 

  74. P. Bazarnik, B. Romelczyk, Y. Huang, M. Lewandowska and T.G. Langdon: J. Alloy. Compd, 2016, vol. 688, pp. 736-45.

    Article  Google Scholar 

  75. 75. K. Edalati, Z. Horita and T.G. Langdon: Scr. Mater., 2009, vol. 60, pp. 9-12.

    Article  Google Scholar 

  76. 76. Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao and T.G. Langdon: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4331-36.

    Article  Google Scholar 

  77. M. Arzaghi: Acta. Mater., 2012, vol. 60, pp. 4393-08.

    Article  Google Scholar 

  78. 78. M. Knezevic and N.W. Landry: Mech. Mater., 2015, vol. 88, pp. 73-86.

    Article  Google Scholar 

  79. 79. Z. Horita and T.G. Langdon: Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 422-25.

    Article  Google Scholar 

  80. 80. X. Liao, Y. Zhao, Y. Zhu, R. Valiev and D. Gunderov: J. Appl. Phys., 2004, vol. 96, pp. 636-40.

    Article  Google Scholar 

  81. 81. J. Jiang, T.B. Britton and A.J. Wilkinson: Int. J. Plast., 2015, vol. 69, pp. 102-17.

    Article  Google Scholar 

  82. 82. M. Ortiz, E.A. Repetto and L. Stainier: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2077-14.

    Article  Google Scholar 

  83. 83. A. Nazarov, N. Enikeev, A. Romanov, T. Orlova, I. Alexandrov, I. Beyerlein and R. Valiev: Acta Mater., 2006, vol. 54, pp. 985-95.

    Article  Google Scholar 

  84. 84. Q. Xue, I. Beyerlein, D. Alexander and G. Gray: Acta Mater., 2007, vol. 55, pp. 655-68.

    Article  Google Scholar 

  85. 85. M. Pérez-Prado and A. Zhilyaev: Phys. Rev Lett., 2009, vol. 102, p. 175504.

    Article  Google Scholar 

  86. 86. Y. Wang, Y. Zhao, Q. Lian, X. Liao, R. Valiev, S. Ringer, Y. Zhu and E. Lavernia: Scri. Mater., 2010, vol. 63, pp. 613-16.

    Article  Google Scholar 

  87. 87. M. Ardeljan, R.J. McCabe, I.J. Beyerlein and M. Knezevic: Comp. Methods Appl. Mech. Eng., 2015, vol. 295, pp. 396-13.

    Article  Google Scholar 

Download references

Acknowledgments

This work is based upon project supported by the National Science Foundation (NSF) under Grant No. 1541918. MHP would like to acknowledge the financial support of Shiraz University through grant number 92-GR-ENG-16. IJB gratefully acknowledges the STEM Women Visiting Scholars Program at UNH funded by NSF Grant No. 1209189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Knezevic.

Additional information

Manuscript submitted July 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahedi, M., Beyerlein, I.J., Paydar, M.H. et al. Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion. Metall Mater Trans A 48, 1249–1263 (2017). https://doi.org/10.1007/s11661-016-3923-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3923-7

Keywords

Navigation