Skip to main content

Advertisement

Log in

Microstructural evolution and microhardness variations in a Cu–36Zn–2Pb alloy processed by high-pressure torsion

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A coarse-grained Cu–36Zn–2Pb alloy with an initial grain size of ~54 μm was processed by high-pressure torsion (HPT) at room temperature under an applied pressure of 6.0 GPa through 1–10 turns, and the evolution of microstructure and microhardness was investigated. Analysis by X-ray diffraction (XRD) showed that in HPT processing the β′-phase transforms to an α-phase and a {111} texture is formed. Microscopic examination showed that dislocations were first formed at equivalent strains of not more than ~25 and when the equivalent strain increased to ~40 there was evidence for twins and secondary twinning. Fine grains were formed with an increase in equivalent strain to ~100 and with further straining these refined grains acted as precursors for additional grain refinement. The refined equiaxed grain size was ~250 nm after HPT through an equivalent strain of ~100 and the results show the microhardness reached a saturation value of ~220 Hv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vilarinho C, Davim JP, Soares D, Castro F, Barbosa J (2005) Influence of the chemical composition on the machinability of brasses. J Mater Process Technol 170:441–447

    Article  Google Scholar 

  2. Gaecía P, Rivera S, Palacios M, Belzunce J (2010) Comparative study of the parameters influencing the machinability of leaded brasses. Eng Failure Anal 17:771–776

    Article  Google Scholar 

  3. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  4. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  5. Dalla Torre FH, Gazder AA, Pereloma EV, Davies CHJ (2007) Recent progress on the study of the microstructure and properties of ECAE copper. J Mater Sci 42:1622–1637. doi:10.1007/s10853-008-2564-7

    Article  Google Scholar 

  6. Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater 52:4819–4832

    Article  Google Scholar 

  7. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  8. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater 46:575–580

    Article  Google Scholar 

  9. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) The microstructural characteristics of ultrafine-grained nickel. Mater Sci Eng A391:377–389

    Article  Google Scholar 

  10. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  11. Dopita M, Janeček M, Kužel R, Seifert HJ, Dobatkin S (2010) Microstructure evolution of CuZr polycrystals processed by high-pressure torsion. J Mater Sci 45:4631–4644. doi:10.1007/s10853-010-4643-9

    Article  Google Scholar 

  12. Jiang HG, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng, A 290:128–138

    Article  Google Scholar 

  13. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J Appl Phys 96:636–640

    Article  Google Scholar 

  14. Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Structure of Cu deformed by high pressure torsion. Acta Mater 53:393–402

    Article  Google Scholar 

  15. Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG (2005) Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater Sci Eng A410–411:188–193

    Article  Google Scholar 

  16. Horita Z, Langdon TG (2005) Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Mater Sci Eng, A 410–411:422–425

    Article  Google Scholar 

  17. Lugo N, Llorca N, Cabrero JM, Horita Z (2008) Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater Sci Eng, A 477:366–371

    Article  Google Scholar 

  18. Wang YB, Liao XZ, Zhao YH, Lavernia EJ, Ringer SP, Horita Z, Langdon TG, Zhu YT (2010) The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Mater Sci Eng, A 527:4959–4966

    Article  Google Scholar 

  19. Srinivasarao B, Zhilyaev AP, Langdon TG, Pérez-Prado MT (2013) On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion. Mater Sci Eng, A 562:196–202

    Article  Google Scholar 

  20. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion. J Mater Sci 47:7782–7788. doi:10.1007/s10853-012-6587-8

    Article  Google Scholar 

  21. Wongsa-Ngam J, Langdon TG (2014) Microstructural evolution and grain refinement in a Cu–Zr alloy processed by high-pressure torsion. Mater Sci Forum 783–786:2635–2640

    Article  Google Scholar 

  22. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng, A 528:8198–8204

    Article  Google Scholar 

  23. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 603:3190–3198

    Article  Google Scholar 

  24. Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  25. Straumal BB, Gornakova AS, Mazilkin AA, Fabrichnaya OB, Kriegel MJ, Baretzky B, Jiang JZ, Dobatkin SV (2012) Phase transformations in the severely plastically deformed Zr–Nb alloys. Mater Lett 81:225–228

    Article  Google Scholar 

  26. Straumal B, Korneva A, Zięba P (2014) Phase transitions in metallic alloys driven by the high pressure torsion. Arch Civil Mech Eng 14:242–249. doi:10.1016/j.acme.2013.07.002

    Article  Google Scholar 

  27. Pereira PHR, Figueiredo RB, Huang Y, Cetlin PR, Langdon TG (2014) Modeling the temperature rise in high-pressure torsion. Mater Sci Eng, A 593:185–188

    Article  Google Scholar 

  28. Wang J, Horita Z, Furukawa M, Nemoto M, Tsenev NK, Valiev RZ, Ma Y, Langdon TG (1993) An investigation of ductility and microstructural evolution in an Al–3% Mg alloy with submicron grain size. J Mater Res 8:2810–2818

    Article  Google Scholar 

  29. Wang J, Iwahashi Y, Horita Z, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) An investigation of microstructural stability in an AlMg alloy with submicrometer grain size. Acta Mater 44:2973–2982

    Article  Google Scholar 

  30. Valiev RZ, Musalimov RS, Tsenev NK (1989) The non-equilibrium state of grain boundaries and the grain boundary precipitations in aluminium alloys. Phys Status Solidi (a) 115:451–457

    Article  Google Scholar 

  31. Nazarov AA, Romanov AE, Valiev RZ (1993) On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall Mater 41:1033–1040

    Article  Google Scholar 

  32. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) Investigation of grain boundaries in sub-micrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J Mater Res 11:1880–1890

    Article  Google Scholar 

  33. Horita Z, Smith DJ, Nemoto M, Valiev RZ, Langdon TG (1998) Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J Mater Res 13:446–450

    Article  Google Scholar 

  34. Komura S, Horita Z, Nemoto M, Langdon TG (1999) Influence of stacking fault energy on microstructural development in equal-channel angular pressing. J Mater Res 14:4044–4050

    Article  Google Scholar 

  35. Vorhauer A, Pippan R (2004) On the homogeneity of deformation by high pressure torsion. Scripta Mater 51:921–925

    Article  Google Scholar 

  36. Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng, A 497:168–173

    Article  Google Scholar 

  37. Harai Y, Edalati K, Horita Z, Langdon TG (2009) Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta Mater 57:1147–1153

    Article  Google Scholar 

  38. Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall Mater Trans 40A:2079–2086

    Article  Google Scholar 

  39. Edalati K, Horita Z, Yagi S, Matsubara E (2009) Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng, A 523:277–281

    Article  Google Scholar 

  40. Edalati K, Fujioka T, Horita Z (2009) Evolution of mechanical properties and microstructures with equivalent strain in pure Fe processed by high pressure torsion. Mater Trans 50:44–50

    Article  Google Scholar 

  41. Edalati K, Ito Y, Suehiro K, Horita Z (2009) Softening of high purity aluminum and copper processed by high pressure torsion. Int J Mater Res 100:1668–1673. doi:10.3139/146.110231

    Article  Google Scholar 

  42. Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion. Mater Sci Eng, A 527:4864–4869

    Article  Google Scholar 

  43. Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater Sci Eng, A 528:3601–3608

    Article  Google Scholar 

  44. Edalati K, Horita Z (2011) Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater Sci Eng, A 528:7514–7523

    Article  Google Scholar 

  45. Edalati K, Imamura K, Kiss T, Horita Z (2012) Equal-channel angular pressing and high-pressure torsion of pure copper: evolution of electrical conductivity and hardness with strain. Mater Trans 53:123–127

    Article  Google Scholar 

  46. Mine Y, Horita Z (2012) Effects on ultrafine-grained steels processed by high-pressure torsion. Mater Trans 53:773–785

    Article  Google Scholar 

  47. Wang YC, Langdon TG (2013) Influence of phase volume fractions on the processing of Ti–6Al–4V alloy by high-presure torsion. Mater Sci Eng A559:861–867

    Article  Google Scholar 

  48. Edalati K, Horita Z, Furuta T, Kuramoto S (2013) Dynamic recrystallization and recovery during high-pressure torsion: experimental evidence by torque measurement using ring specimens. Mater Sci Eng, A 559:506–509

    Article  Google Scholar 

  49. Wang YC, Langdon TG (2013) Effect of heat treatment on microstructure and microhardness evolution in a Ti–6Al–4V alloy processed by high-pressure torsion. J Mater Sci 48:4646–4653. doi:10.1007/s10853-012-7071-1

    Article  Google Scholar 

  50. Edalati K, Daio T, Horita Z, Kishida K, Inui H (2013) Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in Ni–Al–Ti intermetallics by high-pressure torsion. J Alloys Compd 563:221–228

    Article  Google Scholar 

  51. Andreau O, Gubicza J, Zhang NX, Huang Y, Jenei P, Langdon TG (2014) Effect of short-term annealing on the microstructures and flow properties of an Al–1% Mg alloy processed by high-pressure torsion. Mater Sci Eng, A 615:231–239

    Article  Google Scholar 

  52. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  53. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Factors influencing the equilibrium grain size in equal-channel angular pressing: role of Mg additions to aluminum. Metall Mater Trans 29A:2503–2510

    Article  Google Scholar 

  54. Sun PL, Zhao YH, Cooley JC, Kassner ME, Horita Z, Langdon TG, Lavernia EJ, Zhu YT (2009) Effect of stacking fault energy on strength and ductility of nanostructured alloys: an evaluation with minimum solution hardening. Mater Sci Eng A525:83–86

    Article  Google Scholar 

  55. Lu L, Shen YF, Chen XH, Qian LH, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426

    Article  Google Scholar 

  56. Liu Q, Juul Jensen D, Hansen N (1998) Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater 46:5819–5838

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant No. 11221202 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H.Y., Wang, C.T., Wang, Y.C. et al. Microstructural evolution and microhardness variations in a Cu–36Zn–2Pb alloy processed by high-pressure torsion. J Mater Sci 50, 1535–1543 (2015). https://doi.org/10.1007/s10853-014-8713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8713-2

Keywords

Navigation