Skip to main content
Log in

Measuring Grain Boundary Character Distributions in Ni-Base Alloy 725 Using High-Energy Diffraction Microscopy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We use high-energy X-ray diffraction microscopy (HEDM) to characterize the microstructure of Ni-base alloy 725. HEDM is a non-destructive technique capable of providing three-dimensional reconstructions of grain shapes and orientations in polycrystals. The present analysis yields the grain size distribution in alloy 725 as well as the grain boundary character distribution (GBCD) as a function of lattice misorientation and boundary plane normal orientation. We find that the GBCD of Ni-base alloy 725 is similar to that previously determined in pure Ni and other fcc-base metals. We find an elevated density of Σ9 and Σ3 grain boundaries. We also observe a preponderance of grain boundaries along low-index planes, with those along (1 1 1) planes being the most common, even after Σ3 twins have been excluded from the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. E. Burke and D. Turnbull, Prog Met Phys 1952, vol. 3, pp. 220-292.

    Article  Google Scholar 

  2. E. O. Hall, P Phys Soc Lond B 1951, vol. 64, pp. 747-753.

    Article  Google Scholar 

  3. N. J. Petch, J Iron Steel I 1953, vol. 174, pp. 25-28.

    Google Scholar 

  4. 3. T. Watanabe and S. Tsurekawa, Mat Sci Eng a-Struct 2004, vol. 387, pp. 447-455.

    Article  Google Scholar 

  5. 4. P. Y. Hou, J Am Ceram Soc 2003, vol. 86, pp. 660-668.

    Article  Google Scholar 

  6. 5. M. Shimada, H. Kokawa, Z. J. Wang, Y. S. Sato and I. Karibe, Acta Mater 2002, vol. 50, pp. 2331-2341.

    Article  Google Scholar 

  7. 6. R. L. Coble, J Appl Phys 1963, vol. 34, pp. 1679-1682.

    Article  Google Scholar 

  8. 7. U. Lienert, S. F. Li, C. M. Hefferan, J. Lind, R. M. Suter, J. V. Bernier, N. R. Barton, M. C. Brandes, M. J. Mills, M. P. Miller, B. Jakobsen and W. Pantleon, Jom-Us 2011, vol. 63, pp. 70-77.

    Article  Google Scholar 

  9. L.E. Shoemaker: Superalloys 718, 625, 706 and Derivatives, Proceedings 2005, pp. 409–18.

  10. 9. E. A. Groshart, Met Finish 1984, vol. 82, pp. 49-51.

    Google Scholar 

  11. D. Nguyen, A. W. Thompson and I. M. Bernstein, Acta Metall Mater 1987, vol. 35, pp. 2417-2425.

    Article  Google Scholar 

  12. M. Seita, J. P. Hanson, S. Gradecak and M. J. Demkowicz, Nat Commun 2015, vol. 6, p. 6161

    Article  Google Scholar 

  13. 10. C. Goux, Can Metall Quart 1974, vol. 13, pp. 9-31.

    Article  Google Scholar 

  14. A. Morawiec: Grain Growth Polycryst. Mater. III 1998, pp. 509–14.

  15. 12. D. M. Saylor, A. Morawiec, B. L. Adams and G. S. Rohrer, Interface Sci 2000, vol. 8, pp. 131-140.

    Article  Google Scholar 

  16. 13. V. Randle, Acta Mater 1998, vol. 46, pp. 1459-1480.

    Article  Google Scholar 

  17. 14. F. Heidelbach, H. R. Wenk, S. R. Chen, J. Pospiech and S. I. Wright, Mat Sci Eng a-Struct 1996, vol. 215, pp. 39-49.

    Article  Google Scholar 

  18. J. Pospiech, K. Sztwiertnia and F. Haessner, Texture Microstruct 1986, vol. 6, pp. 201-215.

    Article  Google Scholar 

  19. 15. D. M. Saylor, A. Morawiec and G. S. Rohrer, Acta Mater 2003, vol. 51, pp. 3663-3674.

    Article  Google Scholar 

  20. J. Alkemper and P. W. Voorhees, Acta Mater 2001, vol. 49, pp. 897-902.

    Article  Google Scholar 

  21. 16. W. M. Williams and C. S. Smith, T Am I Min Met Eng 1952, vol. 194, pp. 755-765.

    Google Scholar 

  22. 17. J. Li, S. J. Dillon and G. S. Rohrer, Acta Mater 2009, vol. 57, pp. 4304-4311.

    Article  Google Scholar 

  23. 18. S. J. Dillon and G. S. Rohrer, J Am Ceram Soc 2009, vol. 92, pp. 1580-1585.

    Article  Google Scholar 

  24. 19. H. F. Poulsen, S. F. Nielsen, E. M. Lauridsen, S. Schmidt, R. M. Suter, U. Lienert, L. Margulies, T. Lorentzen and D. J. Jensen, J Appl Crystallogr 2001, vol. 34, pp. 751-756.

    Article  Google Scholar 

  25. 20. B. W. Krakauer and D. N. Seidman, Interface Sci 2000, vol. 8, pp. 27-40.

    Article  Google Scholar 

  26. 21. J. Duyster and B. Stockhert, Contrib Mineral Petr 2001, vol. 140, pp. 567-576.

    Article  Google Scholar 

  27. 22. H. F. Poulsen, Springer Tr Mod Phys 2004, vol. 205, pp. 1-5.

    Article  Google Scholar 

  28. R. M. Suter, D. Hennessy, C. Xiao and U. Lienert, Rev Sci Instrum 2006, vol. 77, p. 123905

    Article  Google Scholar 

  29. 23. A. D. Rollett, S. B. Lee, R. Campman and G. S. Rohrer, Annu Rev Mater Res 2007, vol. 37, pp. 627-658.

    Article  Google Scholar 

  30. 24. C. M. Hefferan, J. Lind, S. F. Li, U. Lienert, A. D. Rollett and R. M. Suter, Acta Mater 2012, vol. 60, pp. 4311-4318.

    Article  Google Scholar 

  31. 25. C. M. Hefferan, S. F. Li, J. Lind and R. M. Suter, Powder Diffr 2010, vol. 25, pp. 132-137.

    Article  Google Scholar 

  32. C. M. Hefferan, S. F. Li, J. Lind, U. Lienert, A. D. Rollett, P. Wynblatt and R. M. Suter, Cmc-Comput Mater Con 2009, vol. 14, pp. 209-219.

    Google Scholar 

  33. S.F. Li: Ph.D. Thesis, Carnegie Mellon University, 2011.

  34. S. F. Li and R. M. Suter, J Appl Crystallogr 2013, vol. 46, pp. 512-524.

    Article  Google Scholar 

  35. 26. P. G. Kotula, G. S. Rohrer and M. P. Marsh, Mrs Bull 2014, vol. 39, pp. 361-365.

    Article  Google Scholar 

  36. FEI Visualization Sciences Group: Avizo, 2013. http://www.vsg3d.com/avizo/overview.

  37. M.A. Groeber and M.A. Jackson: Integrating Materials and Manufacturing Innovation 2014, vol. 3.

  38. D. M. Saylor, J. Fridy, B. S. El-Dasher, K. Y. Jung and A. D. Rollett, Metall Mater Trans A 2004, vol. 35A, pp. 1969-1979.

    Article  Google Scholar 

  39. M. Groeber, S. Ghosh, M. D. Uchic and D. M. Dimiduk, Acta Mater 2008, vol. 56, pp. 1257-1273.

    Article  Google Scholar 

  40. M. Groeber, S. Ghosh, M. D. Uchic and D. M. Dimiduk, Acta Mater 2008, vol. 56, pp. 1274-1287.

    Article  Google Scholar 

  41. Kitware: ParaView, 2013. http://www.paraview.org/.

  42. 30. D. M. Saylor, B. S. El Dasher, A. D. Rollett and G. S. Rohrer, Acta Mater 2004, vol. 52, pp. 3649-3655.

    Article  Google Scholar 

  43. 31. J. P. Hanson, M. Seita, E. Jones, S. Gradecak and M. J. Demkowicz, CORROSION 2015. Dallas, Texas: NACE International 2015.

    Google Scholar 

  44. S. Mannan and F. Veltry: Superalloys 718, 625, 706 and Various Derivatives 2001, pp. 345–56.

  45. 33. J. C. Tucker, L. H. Chan, G. S. Rohrer, M. A. Groeber and A. D. Rollett, Scripta Mater 2012, vol. 66, pp. 554-557.

    Article  Google Scholar 

  46. 34. K. Okazaki and H. Conrad, Metall Trans 1972, vol. 3, pp. 2411-2421.

    Article  Google Scholar 

  47. F. N. Rhines and B. R. Patterson, Metall Trans A 1982, vol. 13, pp. 985-993.

    Article  Google Scholar 

  48. H. Conrad, M. Swintowski and S. L. Mannan, Metall Trans A 1985, vol. 16, pp. 703-708.

    Article  Google Scholar 

  49. M. F. Vaz and M. A. Fortes, Scripta Metall Mater 1988, vol. 22, pp. 35-40.

    Article  Google Scholar 

  50. A. Cerrone, J. Tucker, C. Stein, A. Rollett, and A. Ingraffea: EMI/PMC 2012, 17–20 June 2012, Notre Dame, IN.

  51. 36. D. G. Brandon, Acta Metall Mater 1966, vol. 14, pp. 1479-1484.

    Article  Google Scholar 

  52. A. H. King and S. Shekhar, J Mater Sci 2006, vol. 41, pp. 7675-7682.

    Article  Google Scholar 

  53. 37. G. S. Rohrer, D. M. Saylor, B. El Dasher, B. L. Adams, A. D. Rollett and P. Wynblatt, Z Metallkd 2004, vol. 95, pp. 197-214.

    Article  Google Scholar 

  54. 38. J. K. Mackenzie, Biometrika 1958, vol. 45, pp. 229-240.

    Article  Google Scholar 

  55. 39. V. Randle, G. S. Rohrer, H. M. Miller, M. Coleman and G. T. Owen, Acta Mater 2008, vol. 56, pp. 2363-2373.

    Article  Google Scholar 

  56. 40. G. S. Rohrer, V. Randle, C. S. Kim and Y. Hu, Acta Mater 2006, vol. 54, pp. 4489-502.

    Article  Google Scholar 

  57. 41. D. L. Olmsted, S. M. Foiles and E. A. Holm, Acta Mater 2009, vol. 57, pp. 3694-703.

    Article  Google Scholar 

  58. G. S. Rohrer, E. A. Holm, A. D. Rollett, S. M. Foiles, J. Li and D. L. Olmsted, Acta Mater 2010, vol. 58, pp. 5063-5069.

    Article  Google Scholar 

  59. 42. V. Randle and G. Owen, Acta Mater 2006, vol. 54, pp. 1777-1783.

    Article  Google Scholar 

  60. H. Akhiani, M. Nezakat, M. Sanayei, and J. Szpunar, Mater. Sci. Eng. A, 2015, vol. 626, pp. 51–60.

    Article  Google Scholar 

  61. 43. V. Randle, Acta Mater 2004, vol. 52, pp. 4067-4081.

    Article  Google Scholar 

  62. C.F. Hefferan: Carnegie Mellon University 2012.

  63. J.P. Hanson, A. Bagri, J. Lind, P. Kenesei, R.M. Suter, S. Gradecak, and M.J. Demkowicz: in preparation 2016.

Download references

Acknowledgments

This work was supported by the BP-MIT Materials and Corrosion Center. This research used resources at the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. AB acknowledges support from the National Science Foundation, Grant No. 1150862, in HEDM data analysis. JPH thanks the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Contract No. DE-AC05-06OR23100. Work at CMU was supported by the Department of Energy/Basic Energy Sciences Grant DESC0002001. Computational support for this research was provided by Grant TG-DMR130061 from the National Science Foundation’s Extreme Science and Engineering Discovery Environment (XSEDE) advanced support program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Bagri.

Additional information

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Manuscrtipt submitted March 4, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagri, A., Hanson, J.P., Lind, J. et al. Measuring Grain Boundary Character Distributions in Ni-Base Alloy 725 Using High-Energy Diffraction Microscopy. Metall Mater Trans A 48, 354–361 (2017). https://doi.org/10.1007/s11661-016-3831-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3831-x

Keywords

Navigation