Skip to main content
Log in

Kinetics of the Formation of Intermetallic Phases in HP-Type Heat-Resistant Alloys at Long-Term High-Temperature Exposure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of formation and morphology of the intermetallic phases in the structure of heat-resistant as-cast HP40NbTi alloys in the course of long high-temperature exposure have been studied with the help of light and electron microscopy, electron microprobe, and X-ray diffraction. During exposure of 2 to 1000 hours at 1423 K (1150 °C), intermetallic phase with conditional formula Cr7Ni5Si3N3FeNb is formed in the alloy. The analysis of the kinetics of intermetallic phase’s growth for an impact assessment of certain metal substitutional elements (niobium, chromium, silicon) on the size of the formed particles was performed. Formation and growth of the intermetallic phases with high silicon content in the alloy structure on the boundaries between niobium and chromium carbides (NbC and M23C6) and matrix γ-phase provide a diffusion barrier for oxygen in oxidizing environment. This may create partial protection against oxidation of hardening carbide phases in the structure and promote increasing of the serviceability of the HP series alloys under operating conditions in the petrochemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Garbiak, W. Jasiňski, B. Piekarski: Arch. Foundry Eng., 2011, vol. 11, pp. 47–52.

    Google Scholar 

  2. A. Alvino, D. Lega, F. Giacobbe, V. Mazzocchi, A. Rinaldi: Eng. Fail. Anal., 2010, vol. 17, pp. 1526–41.

    Article  Google Scholar 

  3. K. Tanaka, H. Kawaura, N. Matsumoto, K. Nishino: Calphad, 2006, vol. 30, pp. 415–20.

    Article  Google Scholar 

  4. H.M. Tawancy, A. Ul-Hamid, A.I. Mohammed, N.M. Abbas: Mater. Des., 2007, vol. 28, pp. 686–703.

    Article  Google Scholar 

  5. S. Yu. Kondrat’ev, V.S. Kraposhin, G.P. Anastasiadi, A.L. Talis: Acta Mater., 2015, vol. 100, pp. 275–81.

    Article  Google Scholar 

  6. L.H. De Almeida, A.F. Ribeiro, I.L. May: Mater. Char., 2003, vol. 49, pp. 219–29.

    Article  Google Scholar 

  7. E.A. Kenik, P.J. Maziasz, R.W. Swindeman, J. Cervenka, D. May: Scr. Mater., 2003, vol. 49, pp. 17–22.

    Article  Google Scholar 

  8. J. Laigo, F. Christien, R. Le Gall, F. ancret, J. urtado: Mater. Char., 2008, vol. 59, pp. 1580–86.

    Article  Google Scholar 

  9. A.I. Rudskoy, A.S. Oryshchenko, S.Yu. Kondrat’ev, G.P. Anastasiadi, M.D. Fuks, S.N. Petrov: Met. Sci. Heat Treat., 2013, vol. 55, pp. 209–15.

    Article  Google Scholar 

  10. L.S. Monobe, C.G. Schön: J. Mater. Res. Technol., 2013, vol. 2, pp. 195-201.

    Article  Google Scholar 

  11. A.I. Rudskoy, A.S. Oryshchenko, S.Yu. Kondrat’ev, G.P. Anastasiadi, M.D.Fuks: Met. Sci. Heat Treat., 2014, vol. 56, pp. 3–8.

    Article  Google Scholar 

  12. K. Yamamoto, M. Hashimoto, N. Sasaguri, Y. Matsubara: Mater. Trans., 2009, vol. 50, pp. 253–58.

    Google Scholar 

  13. A.I. Rudskoy, S.Yu. Kondrat’ev, G.P. Anastasiadi, A.S. Oryshchenko, M.D. Fuks, S.N. Petrov: Met. Sci. Heat Treat., 2014, vol. 55, pp. 517–25.

    Article  Google Scholar 

  14. Md. Moniruzzaman, H. Fukaya, Y. Muratal, K. Tanaka, H. Inui: Mater. Trans., 2012, vol. 53, pp. 2111–18.

    Article  Google Scholar 

  15. T. Sourmail: Mater. Sci. Technol., 2001, vol. 17, pp. 1–14.

    Article  Google Scholar 

  16. G.F. Vander Voort, G.M. Lucas, E.P. Manilova: in Davis J.R., Davis & Associates, eds. ASM International ASM Handbook, 2004, Metallography and Microstructures, Materials Park, ASM International, vol. 9: 2004, pp. 820–59.

  17. M. Garbiak, R. Chyliňska: Arch. Foundry Eng., 2008, vol. 8, pp. 27–30.

    Google Scholar 

  18. F.G. Caballero, P. Imizcoz, V. Lopez, L.F. Alvarez, C. Garcia de Andrés: Mater. Sci. Technol., 2007, vol. 23, pp. 528–34.

    Article  Google Scholar 

  19. A.I. Rudskoy, S.Yu. Kondrat’ev, G.P. Anastasiadi, A.S. Oryshchenko, M.D. Fuks: Met. Sci. Heat Treat., 2014, vol. 56, pp. 124–30.

    Article  Google Scholar 

  20. R.A.P. Ibañez, G.D. De Almeida Soares, L.H. De Almeida, I. Le May: Mater. Char., 1993, vol. 30, pp. 243–49.

    Article  Google Scholar 

  21. G.P. Anastasiadi, S.Yu. Kondrat’ev, A.I. Rudskoy: Met. Sci. Heat Treat., 2014, vol. 56, pp. 403-8.

    Article  Google Scholar 

  22. A.A. Kaya, P. Krauklis, D.J. Young: Mater. Char., 2002, vol. 49, pp. 11–21.

    Article  Google Scholar 

  23. S.Yu. Kondrat’ev, G.P. Anastasiadi, A.I. Rudskoy: Met. Sci. Heat Treat., 2015, vol. 56, pp. 531–36.

    Article  Google Scholar 

  24. A.M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, F. Habiby: J. Miner. Mater. Char. Eng., 2008, vol. 7, pp. 127–45.

    Google Scholar 

  25. A.I. Rudskoi, G.P. Anastasiadi, S.Yu. Kondrat’ev, A.S. Oryshchenko, M.D. Fuks: Phys. Met. Metallog., 2014, vol. 115, pp. 1–11.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank sincerely Julia and Melvin Mawhin for editing the English version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Yu. Kondrat’ev.

Additional information

Manuscript submitted April 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.Y., Anastasiadi, G.P., Petrov, S.N. et al. Kinetics of the Formation of Intermetallic Phases in HP-Type Heat-Resistant Alloys at Long-Term High-Temperature Exposure. Metall Mater Trans A 48, 482–492 (2017). https://doi.org/10.1007/s11661-016-3814-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3814-y

Keywords

Navigation