Skip to main content
Log in

Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ε-martensite, or twins. Significant amounts of deformation-induced α′-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α′-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Weiss A, Wendler M, Gutte H, Biermann H (2013) Int Foundry Res 65(4):2-10.

    Google Scholar 

  2. L. Krüger, L. W. Meyer, U. Brüx, G. Frommeyer and O. Grässel: J. Phys. IV, 2003, vol. 110, pp. 189-194.

    Google Scholar 

  3. I. Tamura: Met. Sci.,1982, vol. 16, pp. 245-253.

    Article  Google Scholar 

  4. V. F. Zackay, E. R. Parker, D. Fahr and R. Busch: Trans. Am. Soc. Metals, 1967, vol. 60, pp. 252-259.

    Google Scholar 

  5. O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-1409.

    Article  Google Scholar 

  6. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108-6118.

    Article  Google Scholar 

  7. S. Martin, S. Wolf, U. Martin, L. Krüger and D. Rafaja: Metall. Mater. Trans. A, 2014, vol. 47A, pp. 49-58.

    Google Scholar 

  8. S. Martin, S. Wolf, S. Decker, L. Krüger and U. Martin: Steel Res. Int., 2015, vol. 86, pp. 1187-1196.

    Article  Google Scholar 

  9. S. Wolf, S. Martin, L. Krüger and U. Martin: Mater. Sci. Eng. A, 2014, vol. 594, pp. 72-81.

    Article  Google Scholar 

  10. L. Krüger, S. Wolf, U. Martin, S. Martin, P. R. Scheller, A. Jahn and A. Weiß: J. Phys.: Conf. Ser., 2010, vol. 240, pp. 012098.

    Google Scholar 

  11. D. Rafaja, C. Krbetschek, C. Ullrich and S. Martin: J. Appl. Cryst., 2014, vol. 47, pp. 936-947.

    Article  Google Scholar 

  12. S. Martin, S. Wolf, U. Martin and L. Krüger: Solid State Phenom., 2011, vol. 172-174, pp. 172-177.

    Article  Google Scholar 

  13. J. Talonen, P. Nenonen, G. Pape and H. Hänninen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 421-432.

    Article  Google Scholar 

  14. P. O. K. Krehl: History of Shock Waves, Explosions and Impact, Springer, Berlin, Germany, 2009, pp. 28-33.

    Google Scholar 

  15. M. B. Boslough and J. R. Asay. Unjhaihjhvjjkjz icaji. In: J. R. Asay, M. Shahinpoor (eds) High-Pressure Shock Compression of Solids, Springer, New York, 1993, pp. 7-42.

    Chapter  Google Scholar 

  16. K. E. Aeberli and P. L. Pratt: J. Mater. Sci., 1985, vol. 20, pp. 316-330.

    Article  Google Scholar 

  17. K.P. Staudhammer: in Proceedings of the International Conference on Impact Loading and Dynamic Behavior of Materials, Bremen, 1987, pp. 93–111.

  18. G.T. Gray III (1993) Ucnmkankjhjkah nklzkvhn. In: J.R. Asay and M. Shahinpoor (eds) High-pressure shock compression of solids. Springer, New York, pp. 187-215.

    Chapter  Google Scholar 

  19. M. Edwards: Mater. Sci. Technol., 2006, vol. 22, pp. 453-462.

    Article  Google Scholar 

  20. J. E. Field, S. M. Walley, W. G. Proud, H. T. Goldrein and C. R. Siviour: Int. J. Impact Eng., 2004, vol. 30, pp. 725-775.

    Article  Google Scholar 

  21. D. Bancroft, E. L. Peterson and S. Minshall: J. Appl. Phys., 1956, vol. 27, pp. 291-298.

    Article  Google Scholar 

  22. L. M. Barker and R. E. Hollenbach: J. Appl. Phys., 1974, vol. 45, pp. 4872-4887.

    Article  Google Scholar 

  23. S. V. Razorenov, A. A. Bogach and G. I. Kanel: Phys. Met. Metall., 1997, vol. 83, pp. 100-03.

    Google Scholar 

  24. M. A. Meyers and L. E. Murr: In T. Z. Blazynski (ed) Explosive Welding, Forming, and Compaction, Springer, Berlin, 1983, pp. 17-82.

    Chapter  Google Scholar 

  25. S. N. Chang and M. A. Meyers: Acta Met., 1988, vol. 36, pp. 1085-1098.

    Article  Google Scholar 

  26. A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li and J. Lu: Acta mater., 2011, vol. 59, pp. 3697-3709.

    Article  Google Scholar 

  27. W.-S. Lee and C.-F. Lin: Scripta mater., 2000, vol. 43, pp. 777-782.

    Article  Google Scholar 

  28. R. Montanari: Mater. Lett., 1992, vol. 15, pp. 73-78.

    Article  Google Scholar 

  29. C. Sudha, T. N. Prasanthi, V. T. Paul, S. Saroja and M. Vijayalakshmi: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3596-3607.

    Article  Google Scholar 

  30. V. I. Zeldovich, A. E. Kheifets, N. Y. Frolova, A. K. Muzyrya and A. Y. Simonov: Phys. Met. Metallogr. 2013, vol. 114, pp. 1031-1037.

    Article  Google Scholar 

  31. R. Eckner, B. Reichel, A. S. Savinykh, L. Krüger, S. V. Razorenov and G. V. Garkushin: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 75-83.

    Article  Google Scholar 

  32. F. Zhang, M. Hao, F. C. Wang, C. W. Tan, X. D. Yu, H. L. Ma and H. N. Cai.: Scr. Mater., 2012, vol. 67, pp. 951-954.

    Article  Google Scholar 

  33. E. N. Borodin, S. A. Atroshenko and A. E. Mayer: Tech. Phys., 2014, vol. 59, pp. 1163-1170.

    Article  Google Scholar 

  34. G. T. Gray III: Annu. Rev. Mater. Res., 2012, vol. 42, pp. 1531-7331.

    Article  Google Scholar 

  35. H.-J. Kestenbach and M. A. Meyers: Metall. Trans., 1976, vol. 7A, pp. 1943-1950.

    Article  Google Scholar 

  36. K. Chen, C. Zheng, Z. Yuan, J. Lu, X. Ren and X. Luo: Mater. Sci. Eng. A, 2013, vol. 587, pp. 244-249.

    Article  Google Scholar 

  37. S. A. Maloy, G. T. Gray III, C. M. Cady, R. W. Rutherford and R. S. Hixson: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2617-2624.

    Article  Google Scholar 

  38. B. H. Sencer, S. A. Maloy and G. T. Gray III: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1825-1831.

    Article  Google Scholar 

  39. N. N. Thadhani, M. A. Meyers and D. C. Ehrlich: J. Appl. Phys., 1985, vol. 58, pp. 2791-2794.

    Article  Google Scholar 

  40. R. E. Schramm and R. P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345-1351.

    Article  Google Scholar 

  41. K. Thoma, U. Hornemann, M. Sauer and E. Schneider: Meteorit. Planet. Sci., 2005, vol. 40, pp. 1283-1298.

    Article  Google Scholar 

  42. T. Schlothauer, M. R. Schwarz, M. Ovidiu, E. Brendler, R. Moeckel, E. Kroke and G. Heide: skkhjajhhj kjlhajh, in S. V. Krivovichev (ed) Minerals as Advanced Materials II, Springer, Berlin, 2012, pp. 375-388.

    Google Scholar 

  43. K. Keller, T. Schlothauer, M. Schwarz, G. Heide and E. Kroke: High Pressure Res., 2012, vol. 32, pp. 23-29.

    Article  Google Scholar 

  44. T. Schlothauer, G. Heide, K. Keller and E. Kroke: in V. E. Fortov et al. (eds) XXIX International Conference on Equations of State for Matter, Russian Academy of Science, Moscow, 2014, pp. 58-59.

    Google Scholar 

  45. T. Schlothauer, C. Schimpf, E. Brendler, K. Keller, E. Kroke and G. Heide: J. Phys.: Conf. Ser., 2015, vol. 653, pp. 1-12.

    Google Scholar 

  46. A.V. Bushman, I.V. Lomonosov and K.V. Khishchenko: http://teos.ficp.ac.ru/rusbank/, Russian Foundation for Basic Research.

  47. J. D. Bass, T. J. Ahrens, J. R. Abelson and T. Hua: J. Geophys. Res., 1990, vol. 95, pp. 21,767-21,776.

    Article  Google Scholar 

  48. J. M. Brown and R. G. McQueen: J. Geophys. Res., 1986, vol. 91, pp. 7485-7494.

    Article  Google Scholar 

  49. T. Schlothauer, C. Schimpf, G. Heide, E. Kroke and D. Rafaja: in A.A. Deribas and YB Scheck (eds) Explosive Production of new Materials, ISMAN, Krakow, 2014, pp. 181–184.

    Google Scholar 

  50. R. G. McQueen and S. P. Marsh: J. Appl. Phys., 1960, vol. 31, pp. 1253-1269.

    Article  Google Scholar 

  51. A. I. Ryazanov, S. A. Pavlov and M. Kiritani: Mater. Sci. Eng. A, 2003, vol. 350, pp. 245-250.

    Article  Google Scholar 

  52. S. Katayama, T. Fujimoto and A. Matsunawa: Trans. JWRI, 1985, vol. 14, pp. 123-138.

    Google Scholar 

  53. M. A. Meyers: Mater. Sci. Eng., 1981, vol. 51, pp. 261-263.

    Article  Google Scholar 

  54. A. Weidner, S. Martin, V. Klemm, U. Martin and H. Biermann: Scr. Mater., 2011, vol. 64, pp. 513-516.

    Article  Google Scholar 

  55. G. B. Olson and M. Cohen: J. Less-Common Met., 1972, vol. 28, pp. 107-118.

    Article  Google Scholar 

  56. P. L. Mangonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577-1586.

    Article  Google Scholar 

  57. K. P. Staudhammer, L. E. Murr and S. S. Hecker: Acta metall., 1983, vol. 31, pp. 267-274.

    Article  Google Scholar 

  58. W.-S. Lee and C.-F. Lin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2801-2810.

    Article  Google Scholar 

  59. T. S. Byun, N. Hashimoto and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889-3899.

    Article  Google Scholar 

  60. C. Ullrich, R. Eckner, L. Krüger, S. Martin, V. Klemm and D. Rafaja: Mater. Sci. Eng. A, 2016, vol. 649, pp. 390-399.

    Article  Google Scholar 

  61. A. Seupel, R. Eckner, A. Burgold, M. Kuna and L. Krüger: Mater. Sci. Eng. A, 2016, vol. 662, pp. 342-355.

    Article  Google Scholar 

  62. I. Karaman, H. Sehitoglu, K. Gali, Y. I. Chumlyakov and H. J. Maier: Acta Mater., 2000, vol 48, pp. 1345-1359.

    Article  Google Scholar 

  63. S. Balasubramanian and L. Anand: Acta Mater., 2002, vol. 50, pp. 133-148.

    Article  Google Scholar 

  64. S. K. Iyer and C. J. Lissenden: Int. J. Plast., 2003, vol. 19, pp. 2055-2081.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Eckner.

Additional information

Manuscript submitted February 4, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckner, R., Krüger, L., Ullrich, C. et al. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel. Metall Mater Trans A 47, 4922–4932 (2016). https://doi.org/10.1007/s11661-016-3688-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3688-z

Keywords

Navigation