Skip to main content
Log in

Comparative study of the impact response and microstructure of 304L stainless steel with and without prestrain

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study compares the dynamic plastic deformation behavior and microstructural evolution of 304L stainless steel with and without metal-forming prestrain, using the compressive split Hopkinson pressure-bar technique and transmission electron microscopy (TEM) under strain rates ranging from 8 × 102 to 5 × 103 s−1 at room temperature, with true strains varying from yield to 0.3. Results show that the flow stress of unprestrained and prestrained 304L stainless steel is sensitive to applied strain rate, but the prestrained material exhibits greater strength. A higher work-hardening rate and higher strain-rate sensitivity are also found in the prestrained material, while an inverse tendency exists for the activation volume. A constitutive equation with our experimentally determined specific material parameters successfully describes both unprestrained and prestrained dynamic behavior. Microstructural observations reveal that the morphologies of dislocation substructure, mechanical twins, microshear bands, and α′ martensite formation are strongly influenced by prestrain, strain, and strain rate. The density of dislocations increases with increasing strain and strain rate for both materials. The dislocation cell size decreases with increasing strain, strain rate, and prestrain. An elongated cell structure appears in the prestrained material as heavy deformation is applied. Mechanical twins are found only in the prestrained material. Microshear bands and α′ martensite are more evident at large strains and strain rates, especially for the prestrained material. Quantitative analysis indicates that the amount of dislocations, mechanical twins, and α′ martensite varies as a function of work-hardening stress (σσ y), reflecting different strengthening effects and degrees of microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Brickner and J.D. Defilippi: Handbook of Stainless Steels, McGraw-Hill, New York, NY, 1977, pp. 25–31.

    Google Scholar 

  2. S.L. Semiatin and J.H. Holbrook: Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

    Google Scholar 

  3. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad: Metall. Trans. A, 1992, vol. 23A, pp. 3093–3103.

    CAS  Google Scholar 

  4. J.D. Campbell: Mater. Sci. Eng., 1973, vol. 12, pp. 3–21.

    Article  CAS  Google Scholar 

  5. M.C. Mataya, E.L. Brown, and M.P. Riendeau: Metall. Trans. A, 1990, vol. 21A, pp. 1969–87.

    CAS  Google Scholar 

  6. D.P. Harvey II, J.B. Terrell, T.S. Sudarshan, and M.R. Louthan, J.R. Louthan: Eng. Fract. Mech., 1993, vol. 46, pp. 455–64.

    Article  Google Scholar 

  7. K.P. Staudhammer, C.E. Frantz, S.S. Hecker, and L.E. Murr: in Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 91–112.

    Google Scholar 

  8. H.J. Kestenbach and M.A. Meyers: Metall. Trans. A, 1976, vol. 7A, pp. 1943–50.

    CAS  Google Scholar 

  9. K.P. Staudhammer and L.E. Murr: Mater. Sci. Eng., 1980, vol. 44, pp. 97–113.

    Article  CAS  Google Scholar 

  10. M. Gold, W.E. Leyda, and R.H. Zeisloft: J. Eng. Mater. Technol., 1975, vol. 97, pp. 305–12.

    CAS  Google Scholar 

  11. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, pp. 1816–25.

    Article  CAS  Google Scholar 

  12. G.R. Johnson and W.H. Cook: Proc. 7th Intern. Symp. on Ballistics, Am. Def. Prep. Org. (ADPA), The Hague, Netherlands, 1983, pp. 541–47.

    Google Scholar 

  13. W.S. Lee and C.F. Lin: Mater. Sci. Eng., 1998, vol. A241, pp. 48–59.

    CAS  Google Scholar 

  14. W.S. Lee, G.L. Xiea, and C.F. Lin: Mater. Sci. Eng., 1998, vol. A256, pp. 256–67.

    Google Scholar 

  15. L.E. Murr: Scripta Metall., 1978, vol. 12, pp. 201–06.

    Article  CAS  Google Scholar 

  16. W.S. Lee, J.C. Shyu, and S.T. Chiou: Scripta Mater., 2000, vol. 42, pp. 51–56.

    CAS  Google Scholar 

  17. M. Blicharski and S. Gorczyca: Met. Sci., 1978, July, pp. 303–12.

  18. F. Greulich and L.E. Murr: Mater. Sci. Eng., 1979, vol. 39, pp. 81–93.

    Article  CAS  Google Scholar 

  19. X.F. Fang and W. Dahl: Mater. Sci. Eng., 1991, vol. A141, pp. 189–98.

    CAS  Google Scholar 

  20. L. Pat, J.R. Mangonon, and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1587–94.

    Google Scholar 

  21. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    CAS  Google Scholar 

  22. L. Pat, J.R. Mangonon, and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–86.

    Google Scholar 

  23. J.Y. Choi and W. Jin: Scripta Mater., 1997, vol. 36, pp. 99–104.

    Article  CAS  Google Scholar 

  24. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A., 1982, vol. 13A, pp. 619–26.

    Google Scholar 

  25. U.S. Lindholm: J. Mech. Phys. Solids, 1964, vol. 12, pp. 317–35.

    Article  Google Scholar 

  26. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  27. F.J. Zerilli and R.W. Armstrong: in Metal and Ceramic Matrix Composites and Other Advanced Materials, Y.D.S. Rajapakse and J.R. Vinson, eds., ASME, New York, NY, 1995, pp. 121–26.

    Google Scholar 

  28. M.A. Meyers, K.C. Hsu, and K. Couch-Robino: Mater. Sci. Eng., 1983, vol. 59, pp. 235–49.

    Article  Google Scholar 

  29. L.E. Murr: in Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 607–73.

    Google Scholar 

  30. R.K. Ham: Phil. Mag., 1961, vol. 6, pp. 1183–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WS., Lin, CF. Comparative study of the impact response and microstructure of 304L stainless steel with and without prestrain. Metall Mater Trans A 33, 2801–2810 (2002). https://doi.org/10.1007/s11661-002-0265-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0265-4

Keywords

Navigation