Skip to main content
Log in

Correlation Between Interfacial Structure and Toughness in SiC-Al Bilayers

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Reinforcement surface modification is often used to improve the mechanical properties of particle-reinforced metal matrix composites, however, the extent to which such modifications affect the interfacial properties is yet to be revealed. In this study, we fabricated SiC-Al composite bilayers where the SiC underwent different surface treatments before Al deposition. Four-point bending tests showed that the samples made from acid-pickled and thermally oxidized SiC possessed substantially higher interfacial toughness than their untreated counterpart, a presumption inferred from mechanical tests on bulk SiCp-Al composites but never justified quantitatively. These findings were rationalized by the different interfacial constituents and structure in these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. [1] N. Chawla and Y. L. Shen, Adv. Eng. Mater., 2001, vol. 3, pp. 357-370.

    Article  Google Scholar 

  2. [2] S.J. YS Suh and KT Ramesh, Acta Mater., 2009, vol. 57, pp. 5848-5861.

    Article  Google Scholar 

  3. [3] J.W.J.N. Chawla, C. Andres and J.E. Allison, Metall. Mater. Trans. A, 1998, vol. 29, pp. 2843-2854.

    Article  Google Scholar 

  4. [4] Z.Q.Li, X.Z. Kai, G.L. Fan, Q. Guo, D.B. Xiong, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon and D. Zhang, Mat. Sci. Eng. A, 2013, vol. 587, pp. 46-53.

    Google Scholar 

  5. E.K. Tamer Ozben and O. Çakır: J. Mater. Process. Tech., 2008, vol. 198, pp. 220–25.

  6. A.V. K. K. Ajith Kumar, T. P. D. Rajan, U. T. S. Pillai and B. C. Pai: Acta Metall. Sin Eng. L., 2014, vol. 27, pp. 295–305.

  7. [7] J. Romero, L. Wang and R. Arsenault, Mat. Sci. Eng. A, 1996, vol. 212, pp. 1-5.

    Article  Google Scholar 

  8. [8] A. Urena, E. Martınez, P. Rodrigo and L. Gil, Compos. Sci. Technol., 2004, vol. 64, pp. 1843-1854.

    Article  Google Scholar 

  9. [9] J.W. Liu, Z.X. Zheng, J.M. Wang, Y.C. Wu, W.M. Tang and J. Lü, J. Alloy. Compd., 2008, vol. 465, pp. 239-243.

    Article  Google Scholar 

  10. [10] N. Cheng, C. Li, Q. Hui and Z. Chen, Mat. Sci. Eng. A, 2009, vol. 517, pp. 249-256.

    Article  Google Scholar 

  11. [11] D.L.Yang, L.J. Zhang, F. Qiu, J.G. Wang and Q.C. Jiang, Mat. Sci. Eng. A, 2015, vol. 624, pp. 102-109.

    Article  Google Scholar 

  12. [12] Y. Su, Q. Ouyang, W. Zhang, Z. Li, Q. Guo, G. Fan and D. Zhang, Mat. Sci. Eng. A, 2014, vol. 597, pp. 359-369.

    Article  Google Scholar 

  13. [13] Y.S. Suh, S.P. Joshi and K.T. Ramesh, Acta Mater., 2009, vol. 57, pp. 5848-5861.

    Article  Google Scholar 

  14. [14] Y.H. Teng and J.D. Boyd, Composites, 1994, vol. 25, pp. 906-912.

    Article  Google Scholar 

  15. [15] P. Charalambides, J. Lund, A. Evans and R. McMeeking, J. Appl. Mech., 1989, vol. 56, pp. 77-82.

    Article  Google Scholar 

  16. [16] X. Sun and B.D. Davidson, Engi. Fract. Mech., 2006, vol. 73, pp. 1343-1361.

    Article  Google Scholar 

  17. [17] X.L. Guo, Q. Guo, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Zhang, C.L. Gan and D. Zhang, Scripta Mater., 2016, vol. 114, pp. 56-59.

    Article  Google Scholar 

  18. [18] A.B.H. Nick G. Wright and K. Vassilevski, Mater. Today, 2008, vol. 11, pp. 16-21.

    Google Scholar 

  19. [19] M.J. Mehl, Phys. Rev. B, 1993, vol. 47, pp. 2493-2500.

    Article  Google Scholar 

  20. [20] M. Yuan, Y. Yang, C. Li, P. Heng and L. Li, Mater. Design, 2012, vol. 38, pp. 1-6.

    Article  Google Scholar 

  21. [21] J. Hoekstra and M. Kohyama, Phys. Rev. B, 1998, vol. 57, p. 2334.

    Article  Google Scholar 

  22. [22] M.P. Hughey, D.J. Morris, R.F. Cook, S.P. Bozeman, B.L. Kelly, S.L. Chakravarty, D.P. Harkens and L.C. Stearns, Eng. Fract. Mech., 2004, vol. 71, pp. 245-261.

    Article  Google Scholar 

  23. [23] A. Bagchi and A.G. Evans, Thin Solid Films, 1996, vol. 286, pp. 203-212.

    Article  Google Scholar 

  24. [24] T.S. Oh, J. Rödel, R.M. Cannon and R.O. Ritchie, Acta metall., 1988, vol. 36, pp. 2083-2093.

    Article  Google Scholar 

  25. [25] S. Qin, C. Chen, G. Zhang, W. Wang and Z. Wang, Mat. Sci. Eng. A, 1999, vol. 272, pp. 363-370.

    Article  Google Scholar 

Download references

The authors would like to acknowledge the financial support of the National Basic Research Program (973 Program, No. 2012CB619600), the Natural Science Foundation of China (Nos. 51131004, 51471190), and the Science & Technology Committee of Shanghai Municipality (Nos. 15JC1402100, 14DZ2261200, 14520710100). Y. K. and Q.G. would like to acknowledge X. Tian for the help with the four-point bending test. S. Feng is acknowledged for part of the TEM sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Guo or Di Zhang.

Additional information

Manuscript submitted April 27, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Guo, Q., Guo, X. et al. Correlation Between Interfacial Structure and Toughness in SiC-Al Bilayers. Metall Mater Trans A 47, 4800–4805 (2016). https://doi.org/10.1007/s11661-016-3684-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3684-3

Keywords

Navigation