Skip to main content
Log in

Stress-Induced Twinning and Phase Transformations during the Compression of a Ti-10V-3Fe-3Al Alloy

  • Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A metastable β Ti-10V-3Al-3Fe (wt pct) alloy containing different α phase fractions after thermo-mechanical processing was compressed to 0.4 strain. Detailed microstructure evaluation was carried out using high-resolution scanning transmission electron microscopy and electron back-scattering diffraction. Stress-induced βα′′ and βω transformation products together with {332}〈113〉β and {112}〈111〉β twinning systems were simultaneously detected. The effects of β phase stability and strain rate on the preferential activation of these reactions were analyzed. With an increase in β phase stability, stress-induced phase transformations were restricted and {112}〈111〉β twinning was dominant. Alternatively, less stable β conditions or higher strain rates resulted in the dominance of the {332}〈113〉β twinning system and formation of secondary α′′ martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Sasano, and T. Suzuki: in “Crystal structure of martensites in Ti-Mo-Al alloys”, presented at the Titanium ‘80, science and technology: proceedings of the Fourth International Conference on Titanium, Kyoto, Japan, 1980.

  2. L. C. Zhang, T. Zhou, M. Aindow, S. P. Alpay, M. J. Blackburn, and M. H. Wu, J. Mater. Sci. 40 (2005) 2833-36.

    Article  Google Scholar 

  3. T. W. Duerig, J. Albrecht, D. Richter, and P. Fischer, Acta Metall. 30 (1982) 2161-72.

    Article  Google Scholar 

  4. T. Grosdidier and M. J. Philippe, Mater. Sci. Eng. A, 291 (2000) 218-23.

    Article  Google Scholar 

  5. F. Sun, J. Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laillé, et al., Acta Mater., 61 (2013), 6406-17.

    Article  Google Scholar 

  6. M. Ahmed, D. Wexler, G. Casillas, O. M. Ivasishin, and E. V. Pereloma, Acta Mater. 84 (2015) 124-35.

    Article  Google Scholar 

  7. M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P. J. Jacques, and F. Prima, Scr. Mater. 66 (2012) 749-52.

    Article  Google Scholar 

  8. M. Morinaga, T. Maya, K. Sone, and H. Adachi: in: Theoretical design of titanium alloys, Presented at the Sixth World Conference on Titanium Alloys, Cannes, 1988.

  9. O. Grässel, L. Krüger, G. Frommeyer, and L. W. Meyer, Int. J. Plast., 16 (2000) 1391-1409.

    Article  Google Scholar 

  10. G. Frommeyer, U. Brüx, and P. Neumann, ISIJ Int., 43(2003), 438-46.

    Article  Google Scholar 

  11. S. Lee, Y. Estrin, and B.C. De Cooman, Metall. Mater. Trans. A, 45A (2014), 717-30.

    Article  Google Scholar 

  12. S. Hanada, O. Izumi, Metall. Trans. A. 17 (1986), 1409-20

    Article  Google Scholar 

  13. T. Furuhara, K. Kishimoto, and T. Maki, Mater. Trans. JIM, 35(12), 1994, 843-50.

    Article  Google Scholar 

  14. T. Grosdidier, C. Roubaud, M.-J. Philippe, and Y. Combres, Scr. Mater., 36 (1997), 21-8.

    Article  Google Scholar 

  15. C. Li, X. Wu, J. H. Chen, and S. van der Zwaag, Mater. Sci. Eng. A, 528 (2011), 5854-60.

    Article  Google Scholar 

  16. M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin,and E.V. Pereloma, Acta Mater., 104 (2016), 190-200.

    Article  Google Scholar 

  17. C. Li, J. H. Chen, X. Wu, and S. van der Zwaag, Mater. Sci. Eng. A, 573 (2013), 111-18.

    Article  Google Scholar 

  18. T. Akanuma, H. Matsumoto, S. Sato, A. Chiba, I. Inagaki, Y. Shirai, T. Maeda, Scr. Mater., 67 (2012) 21-24.

    Article  Google Scholar 

  19. T. Ahmed and H. J. Rack, J. Mater. Sci. 31 (1996) 4267-76.

    Article  Google Scholar 

  20. K. K. Kharia and H. J. Rack, Metall. Mater. Trans. A, 32 (2001) 671-79.

    Article  Google Scholar 

  21. W. G. Burgers, Physica, 1 (1934) 561-86.

    Article  Google Scholar 

  22. D.G. Savvakin, A. Carman, O. M. Ivasishin, M. Matviychuk, A. A. Gazder, and E.V. Pereloma, Metall. Mater. Trans. A, 43 (2012), 716-23.

    Article  Google Scholar 

  23. M. Ahmed, T. Li, G. Casillas, J. M. Cairney, D. Wexler, and E. V. Pereloma, J. Alloys Compd., 629 (2015) 260-73.

    Article  Google Scholar 

  24. A.A. Gazder, W.-Q. Cao, C.H.J. Davies and E.V. Pereloma, Mater. Sci. Eng. A, 497 (2008) 341-52.

    Article  Google Scholar 

  25. A.A. Gazder, M. Sánchez-Araiza, J.J. Jonas and E.V. Pereloma, Acta Mater., 59 (2011) 4847-65.

    Article  Google Scholar 

  26. R. Hielscher and H. Schaeben, J. Appl. Crystallogr. 41 (2008) 1024-37.

    Article  Google Scholar 

  27. G. Palumbo and K. T. Aust, Acta Metall. Mater. 38 (1990) 2343-52.

    Article  Google Scholar 

  28. R. Kapoor, A. Sarkar, J. Singh, I. Samajdar, and D. Raabe, Scr. Mater., 74 (2014) 72-75.

    Article  Google Scholar 

  29. M. Klimova, S. Zherebtsov, G. Salishchev, and S. L. Semiatin, Mater. Sci. Eng. A, 645 (2015) 292-97.

    Article  Google Scholar 

  30. Y. Takemoto, M. Hida, and A. Sakakibara, J. Jpn. Inst. Metals, 57 (1993), 1471-72.

    Article  Google Scholar 

  31. S. Ishiyama, S. Hanada, and O. Izumi, ISIJ Int., 31 (1991), 807-13.

    Article  Google Scholar 

  32. G. M. Rusakov, A. V. Litvinov, and V. S. Litvinov, Met. Sci. Heat. Treat., 48 (2006), 244-51.

    Article  Google Scholar 

  33. Y. Liu and H. Yang, Materials Science and Engineering: A 260 (1999) 240-45.

    Article  Google Scholar 

  34. A. Bhattacharjee, S. Bhargava, V. K. Varma, S. V. Kamat, and A. K. Gogia, Scr. Mater. 53, (2005) 195-200.

    Article  Google Scholar 

  35. G. B. Olson and M. Cohen, Acta Metall. 27 (1979) 1907-18.

    Article  Google Scholar 

  36. S. Nemat-Nasser, J.-Y. Choi, W.-G. Guo, and J. B. Isaacs, Mechanic Mater. 37 (2005) 287-98.

    Article  Google Scholar 

  37. M. Grujicic, G. B. Olson, and W. S. Owen, Metall. Trans. A, 16 (1985) 1713-22.

    Article  Google Scholar 

  38. J.M. Manero, F.J. Gil, and J.A. Planell, Acta Mater., 48 (2000), 3353-59.

    Article  Google Scholar 

  39. H.C. Rogers, J.P. Hirth, and R.E. Reed-Hill: in Deformation Twinning; Proceedings, R.E. Reed-Hill, J.P. Hirth and H.C. Rogers, eds.,1964.

  40. M. Oka and Y. Taniguchi, J. Jpn. Inst. Metal, 42 (1978) 814-20.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor O. M. Ivasishin and Dr. D. Savvakin of the Institute for Metal Physics, Ukraine for providing the source material. The financial support of the Engineering Materials Research Strength at UOW is also appreciated. Dr. M. Ahmed acknowledges the support received through Endeavour Research Fellowship programme. This research used equipment funded by the Australian Research Council (LE120100104, LE0237478, and LE0882613).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansur Ahmed or Elena V. Pereloma.

Additional information

Manuscript submitted December 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Gazder, A.A., Saleh, A.A. et al. Stress-Induced Twinning and Phase Transformations during the Compression of a Ti-10V-3Fe-3Al Alloy. Metall Mater Trans A 48, 2791–2800 (2017). https://doi.org/10.1007/s11661-016-3675-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3675-4

Keywords

Navigation