Skip to main content
Log in

Synthesis of Aluminum-Aluminum Nitride Nanocomposites by Gas-Liquid Reactions I. Thermodynamic and Kinetic Considerations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In-situ fabrication of the reinforcing particles directly in the metal matrix is an answer to many of the challenges encountered in manufacturing metal matrix nanocomposite materials. In this method, the nanosized particles are formed directly within the melt by means of a chemical reaction between a specially designed metallic alloy and a reactive gas. The thermodynamic and kinetic characteristics of this chemical reaction dictate the particle size and distribution in the matrix alloy, as well as the nature of the particle/matrix interface, and consequently, they govern many of the material’s mechanical and physical properties. This article focuses on aluminum-aluminum-nitride nanocomposite materials that are synthesized by injecting a nitrogen-bearing gas into a molten aluminum alloy. The thermodynamic and kinetic aspects of the process are modeled, and the detrimental role of oxygen is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In Eq. [28], coverage (θ) is accounted for in the constant c.

  2. This is a consequence of the drop in the partial pressure of nitrogen inside the bubble, \( P_{{N_{2} ,i}} \), as the bubbles coalesce (Henry’s law).

Abbreviations

\( \alpha_{\text{Li}} \) :

Activation extent of Li in Al-Li alloys at high Li content (>5 pct)

\( \alpha_{\text{Mg}} \) :

Activation extent of Mg in Al-Mg alloys at high Mg content (>5 pct)

\( \gamma \) :

Surface tension of aluminum

\( \delta_{\text{G}} \) :

Thickness of the diffusion layer in the gas bulk

\( \delta_{\text{L}} \) :

Thickness of the diffusion layer in the liquid bulk

η :

Dynamic viscosity of liquid aluminum

θ :

Coverage, defined as \( \theta = \frac{{q_{\text{ads}} }}{{q_{\text{sat}} }} \)

\( \Phi \) :

Measure of the surface drag or velocity gradient at the surface due to the absorbed layer of the gas

µ :

Static viscosity of aluminum

\( \rho_{\text{g}} \) :

Density of gas

\( \rho_{\text{l}} \) :

Density of liquid aluminum

\( A_{\text{t}} \) :

Total gas-liquid interface area

c :

Constant in Eq. [28]

d :

Bubble diameter

\( D_{\text{Al}} \) :

Diffusion coefficient of aluminum

\( D_{\text{N}} \) :

Diffusion coefficient of nitrogen in aluminum

\( d_{\text{o}} \) :

Bubble diameter at bubble detachment

\( d_{\text{no}} \) :

Diameter of the nozzle of the tube

E :

Enhancement factor

\( E_{\text{a}} \) :

Activation energy for chemisorption of nitrogen atoms

\( f_{\text{b}} \) :

Frequency of formation of gas bubbles

He:

Henry’s constant for N2 in liquid Al at T = 1273 K (1000 °C)

\( K_{(12)} \) :

Partition coefficient of Reaction 25

\( K_{\text{AlN}} \) :

Equilibrium constant of Eq. [27]

\( K_{\text{L}} \) :

Mass transfer coefficient of nitrogen in the liquid boundary layer

\( l \) :

Thickness of liquid film in between coalescing bubbles

L :

Depth of the melt

M :

Molar mass of the gas molecule

\( N_{\text{b}} \) :

Number of gas bubbles in the melt

\( P_{\text{GO}} \) :

Pressure of the gas bubble at the moment of detachment from the injection tube

\( P_{\text{l}} \) :

Pressure in the liquid at the injection level

\( P_{{N_{2} ,0}} \) :

Partial pressure of nitrogen in the gas bulk

\( P_{{N_{2} ,i}} \) :

Partial pressure of nitrogen at the gas-liquid interface

\( P_{\text{in}} ,T_{\text{in}} ,V_{\text{in}} \) :

Initial state of reactive gas at the inlet of the injection tube

\( P_{\text{Li}}^{*} \) :

Vapor pressure of pure Li at 1273 K (1000 °C)

\( P_{\text{Mg}}^{*} \) :

Vapor pressure of pure Mg at 1273 K (1000 °C)

\( Q \) :

Gas flow rate

\( q_{\text{ads}} \) :

Occupied adsorption sites on the gas-liquid interface

\( q_{\text{sat}} \) :

Total adsorption sites on the gas-liquid interface

R :

Bubble radius that varies in the melt. R = r at the interface

\( R_{\text{d}} \) :

Radius of the liquid disk between the coalescing bubbles

\( r_{\text{N}} \) :

Rate of chemisorption of nitrogen atoms

T :

Temperature

t :

Gas injection time

\( t_{\text{d}} \) :

Local diffusion time

\( t_{\text{r}} \) :

Residence time of the gas bubble in the melt

\( U_{\text{b}} \) :

Velocity of the gas bubble

\( V_{\text{bo}} \) :

Volume of gas bubble at bubble detachment

\( V_{\text{g}} \) :

Volume of the gas bubble

\( W_{\text{AlN}} \) :

Amount of AlN formed

\( x_{\text{Al}} \) :

Concentration of aluminum

\( x_{{{\text{Al}},i}} \) :

Concentration of aluminum at the gas-liquid interface

\( x_{{{\text{N}},i}} \) :

Concentration of nitrogen atom on the gas-liquid interface

\( x_{{{\text{N}},0}} \) :

Concentration of nitrogen atoms in the liquid bulk

References

  1. C. Borgonovo and M.M. Makhlouf, Transactions of ECCM16—16th European Conference on Composite Materials, Paper no. 23.3.2, Seville, Spain, 2014.

  2. R.G. Reddy, US Patent 6,343,640, 2002.

  3. C. Borgonovo and M.M. Makhlouf, AFS Transactions, Paper no. 12-067, American Foundry Society, Columbus, OH, 2012.

  4. C. Borgonovo, D. Apelian and M.M. Makhlouf, JOM, 2011, Vol. 63, No.2, pp. 57-64.

    Google Scholar 

  5. D.D. Wagman, W.H. Evans, and V.B. Parker, J. Phys. Chem. Ref. Data, 1982, vol. 11.

  6. L.V. Gurvich, I.V. Veyts and C.B. Alcock, Thermodynamic Properties of Individual Substances, 4th ed. CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  7. Q. Zheng, B. Wu and R. G. Reddy, Adv. Eng. Mater., 2003, Vol. 5, No.3, pp. 167-73.

    Article  Google Scholar 

  8. C. Borgonovo and D. Apelian, Mater. Sci. Forum, 2011, Vol. 690, pp. 187-91.

    Article  Google Scholar 

  9. C. Borgonovo and D. Apelian, Mater. Sci. Forum, 2011, Vol. 678, pp. 115-23.

    Article  Google Scholar 

  10. C.M. Little, R.A. Murie and M. Warren, US Patent 3,607,046, 1971.

  11. M.M Avedesian, and H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, Russel Township, OH, 1999.

    Google Scholar 

  12. D.W. Jeppson, J.L. Ballif, W.W. Yuan, and B.E. Chou, Hanford Engineering Development Laboratory, Report HEDL-TME 78-15 UC-20, 1978.

  13. P.C. Yao, and D.J. Fray, Met. Trans. B, 1985, Vol. 16, pp. 41-6.

    Article  Google Scholar 

  14. M.L. Saboungi and M. Blander, J. Electrochem. Soc., 1977, Vol. 124, pp. 6-13.

    Article  Google Scholar 

  15. Q. Zheng and R. G. Reddy, J. Mater. Sci, 2004, Vol. 39, pp. 141-49.

    Article  Google Scholar 

  16. S.G. Chatterjee, Indian Chem. Eng., 2009, Vol. 51, pp. 177-93.

    Article  Google Scholar 

  17. T. Madhavi, A.K. Golder, A.N. Samanta and S. Ray, J. Chem. Eng., 2007, Vol. 128, pp. 95-104.

    Article  Google Scholar 

  18. K. Terasaka, J. Oka and H. Tsuge, Chem. Eng. Sci., 2002, Vol. 57, pp. 3757-65.

    Article  Google Scholar 

  19. C. Roizard and G. Wild, Chem. Eng. Sci., 2002, Vol. 57, pp. 3479-84.

    Article  Google Scholar 

  20. R. Krishna and J.M. Baten, Catal. Today, 2003, Vol. 79-80, pp. 67-75.

    Article  Google Scholar 

  21. F. Takemura and Y. Matsumoto, Chem. Eng. Sci., 2000, Vol. 55, pp. 3907-17.

    Article  Google Scholar 

  22. R.S. Srinivasan, W.A. Gerth, and M.R. Powell, J. Appl. Physiol., Vol. 86, pp. 732-41.

    Google Scholar 

  23. S.Q. Yang, B. Du and L.S. Fan, Chem. Eng. Sci., 2007, Vol. 62, pp. 2-27.

    Article  Google Scholar 

  24. H. Tsuge, K. Terasaka,W. Koshida and H. Matsue, Chem. Eng. Sci., 1997, Vol. 52, pp. 3415-20.

    Article  Google Scholar 

  25. S. Taniguchi, A. Kikuchi, H. Matsuzaki, N. Bessho, ISIJ International, 1988, Vol. 28, pp. 262-70.

    Article  Google Scholar 

  26. J.H. Meldon, O.O. Olawoyin and D. Bonanno, Ind. Eng. Chem., 2009, Vol. 46, pp. 6140–46.

    Article  Google Scholar 

  27. A.A.C.M. Beenackers and W.P.M. Swaaij, Chem. Eng. Sci., 1993, Vol. 48pp. 3109-39.

    Article  Google Scholar 

  28. M.N.C. Pinheiro, Int. Commun. Heat Mass, 2000, Vol. 27, pp. 99-108.

    Article  Google Scholar 

  29. W. Jang and M.M. Aral, Environ. Fluid Mech., 2003, Vol. 3, pp. 173-93.

    Article  Google Scholar 

  30. E.P. Elk, M.C. Knaap and G.F. Versteeg, Symposium Series IChemE, 2006, Vol. 152, pp. 294-310.

    Google Scholar 

  31. P. Atkins and J. De Paula, Physical Chemistry, 7th ed. Macmillan, New York, NY, 2002.

    Google Scholar 

  32. Lecture on Surface Science and Technology Course: ‘Surfaces, Interfaces and their Applications: Adsorbates on Surfaces’, Department of Materials, Swiss Federal Institute of Technology, Zurich, Switzerland, 2002.

  33. A.T. Hubbard, Encyclopedia of Surface and Colloid Science, CRC Press, Boca Raton, FL, 2002.

    Google Scholar 

  34. M.A.K. Azad and S.R. Syeda, J Chem. Eng., 2006, Vol. 24, No 1, pp. 25-35.

    Article  Google Scholar 

  35. W.C. Yang, Handbook of Fluidization and Fluid-Particle Systems, CRC Press, Boca Raton, FL, 2003, pp 772-76.

    Book  Google Scholar 

  36. J.J. Carberry, Chemical and Catalytic Reaction Engineering, Courier Dover Publications, Mineola, NY, 2001.

    Google Scholar 

  37. H.D. Baehr and K. Stephan K, Heat and Mass Transfer, Springer, New York, NY, 2011.

    Book  Google Scholar 

  38. J. Szekely, Fluid Flow Phenomena in Metals Processing, Academic Press, New York, NY, 1979.

    Google Scholar 

  39. Q. Zheng and R. Reddy R, Metall. Mat. Trans, 2003, Vol. 34B, pp. 793-804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makhlouf M. Makhlouf.

Additional information

Manuscript submitted December 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgonovo, C., Makhlouf, M.M. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by Gas-Liquid Reactions I. Thermodynamic and Kinetic Considerations. Metall Mater Trans A 47, 5125–5135 (2016). https://doi.org/10.1007/s11661-016-3665-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3665-6

Keywords

Navigation