Skip to main content
Log in

Detection of Single-Domain Co2FeAl Nanoparticles Using First-Order Reversal Curve Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Half-Heusler nanostructures of Co2FeAl alloys, synthesized via coprecipitation route, were found to contain both hard- and soft-phases magnetic grains, mapped using first-order reversal curves (FORCs) diagrams. The obtained results confirmed that these powders are highly interacting as a single-domain magnetizing system. A significant dependence of the morphology and particle size on the annealing rate was represented by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM images. The presence of the strong magnetizing interaction between the nanoparticles led to the formation of chain-like structure stabilized by PVP polymer. By increasing the annealing rate from 278.15 K/min to 288.15 K/min (5 °C/min to 15 °C/min), the grain shape changed from long nanochain to nonuniform agglomerated grains. Additionally, the magnetic characteristics of the prepared alloys were found to be affected by tuning the annealing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] K. Kobayashi, R. Y. Umetsu, R. Kainuma, K. Ishida, T. Oyamada, A. Fujita and K. Fukamichi: Applied Physics Letters, 2004, vol. 85, pp. 4684–4686.

    Article  Google Scholar 

  2. [2] S. Okamura, A. Miyazaki, S. Sugimoto, N. Tezuka and K. Inomata: Applied Physics Letters, 2005, vol. 86, pp. 232503-1–3.

    Article  Google Scholar 

  3. Z. Bai, L. Shen, G. Han and Y. Pingeng: World Scientific, 2012, vol. 02, pp. 3247-3293.

    Google Scholar 

  4. X. Q. Li, X. G. Xu, S. Q. Yin, D. L. Zhang, J. Miao and Y. Jiang: J. Phys. Conf. Ser., 2011, vol. 263, pp. 0120211–5.

    Google Scholar 

  5. W. Wang, E. Liu, Y. Du, J. Chen and G. Wu: Materials Science, 2012, arXiv:1210.5807.

  6. C. Wang, L. Basit, Y. Khalavka, Y. Guo, F. Casper, T. Gasi, V. Ksenofontov, B. Balke, G. H. Fecher, C. Sonnichsen, Y. K. Hwu, J. J. Lee and C. Felser: Chemistry of Materials, 2010, vol. 22, pp. 6575–6582

    Article  Google Scholar 

  7. [7] T. Li, J. Duan, C. Yang and X. Kou: Micro & Nano Letters, 2013, vol.8, pp. 143–146.

    Article  Google Scholar 

  8. D. Sellmyer and R. Skomski: Advanced Magnetic Nanostructures. Springer, Berlin, 2006, pp. 239-257

    Book  Google Scholar 

  9. [9] S. Alikhanzadeh-Arani, M. Kargar and M. Salavati-Niasari: Journal of Alloys and Compounds, 2014, vol. 614, 35–39.

    Article  Google Scholar 

  10. B. Sunchun, K. H. Kim, N. Leibing, S. Serrano-Guisan, H. W. Schumacher, M. Abid, I. C. Chu, O. N. Mryasov, D. K. Kim, H. C. Wug, C. Hwang and Y. K. Kim: Acta Materialia, 2012, vol. 60, pp. 6714–19.

    Article  Google Scholar 

  11. Y. Takamura, R. Nakane and S. Sugahara: J. Appl. Phys., 2010, vol. 107, pp. 09B111–3.

    Article  Google Scholar 

  12. [12] A. Kumar and P. C. Srivastava: Materials Science-Poland, 2013, vol. 31, pp. 501-505.

    Article  Google Scholar 

  13. [13] S. Alikhanzadeh-Arani, M. Salavati-Niasari and M. Almasi-Kashi: Physica C, 2013, vol. 488, pp. 30–34.

    Article  Google Scholar 

  14. [14] S. Alikhanzadeh-Arani, M. Salavati-Niasari and F. Davar: High Temperature Materials and Processes, 2013, vol. 32, pp. 1–6.

    Article  Google Scholar 

  15. [15] M. Ahmed-Fouad Bash: Polymer Journal, 2010, vol. 42, pp. 728–734.

    Article  Google Scholar 

  16. [16] M. Kogachi, N. Tadachi and T. Nakanishi: Intermetallics, 2006, vol. 14, pp. 742–749.

    Article  Google Scholar 

  17. [17] D. J. Dunlop: J. Geophysical Research, 2002. Vol. 107, pp. 1–22.

    Google Scholar 

  18. [18] S. Alikhanzadeh-Arani, M. Almasi-Kashi and A. Ramazani: Current Applied Physics, 2013, vol. 13, pp. 664–669.

    Article  Google Scholar 

  19. [19] R. Egli, A. P. Chen, M. Winklhofer, K. P. Kodama and C. S. Horng: Geochemistry Geophysics Geosystems, 2010, vol. 11, pp. 1-22.

    Article  Google Scholar 

  20. [20] M. J. Hu, Y. Lu, S. Zhang, S. R. Guo, B. Lin, M. Zhang and S. H. Yu: Journal of the American Chemical Society, 2008, vol. 130, pp. 11606–11607.

    Article  Google Scholar 

  21. [21] S. Alikhanzadeh-Arani, M. Almasi-Kashi, A. Ramazani, M. Salavati-Niasari and Z. Pezeshki-Nejad: Journal of Material Science, 2016, vol. 51, pp. 1354–1362.

    Article  Google Scholar 

  22. [22] Z. Pezeshki-Nejad, A. Ramazani, S. Alikhanzadeh-Arani, M. Almasi-Kashi, M. Salavati-Niasari: Journal of Magnetism and Magnetic Materials, 2016, DOI 10.1016/j.jmmm.2016.04.018.

    Google Scholar 

Download references

Acknowledgment

Financial support from Institute of Nanoscience and Nanotechnology of University of Kashan is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Alikhanzadeh-Arani.

Additional information

Manuscript submitted October 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikhanzadeh-Arani, S., Almasi-Kashi, M., Pezeshki-Nejad, Z. et al. Detection of Single-Domain Co2FeAl Nanoparticles Using First-Order Reversal Curve Method. Metall Mater Trans A 47, 5234–5241 (2016). https://doi.org/10.1007/s11661-016-3662-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3662-9

Keywords

Navigation