Skip to main content
Log in

Isothermal Reduction of Oxide Scale on Hot-Rolled, Low-Carbon Steel in 10 pct H2-Ar

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The isothermal reduction of oxide scale on hot-rolled, low-carbon steel strip in 10 pct H2-Ar mixtures in the temperature range of 673 K to 1073 K (400 °C to 800 °C) was investigated by using a thermo-gravimetric analyzer (TGA). During heating under an argon atmosphere, magnetite/iron eutectoid and proeutectoid magnetite in the oxide scale successively transformed into wüstite at a temperature above 843 K (570 °C). The kinetic plot of the isothermal reduction assumes a sigmoid shape, including induction, acceleration, and finally the decaying stage. Fitting the kinetic curve to mathematical models, the reaction at 1073 K (800 °C) and 773 K (500 °C) were determined to be controlled by phase-boundary-controlled reaction and three-dimensional growth of nuclei, respectively. The reduction product varies with temperature and itself affects the kinetics. Porous and dense iron were, respectively, obtained below and above 873 K (600 °C). A “rate-minimum” was observed at 973 K (700 °C) due to the formation of dense iron that blocks the gas diffusion. Due to the structural transformation of oxide scale during heating, the reactant depends on the heating process. However, compared with the oxide scale structure, the temperature is more important in determining the reduction kinetics at temperatures above 973 K (700 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. 1. K. Voges, A. Mueth, and B. Lehane: Iron Steel Technol., 2008, vol. 5, pp. 81-96.

    Google Scholar 

  2. 2. L.V. Blgdandy and H.J. Engell: The Reduction of Iron Ores: Scientific Basis and Technology, Springer-Verlag, Berlin Heidelberg, 1971, pp. 47-100.

    Book  Google Scholar 

  3. 3. M.F. Rau, D. Rieck, and J.W. Evans: Metall. Mater. Trans. B, 1987, vol. 18B, pp. 257-78.

    Article  Google Scholar 

  4. 4. P.C. Hayes: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 19-34.

    Article  Google Scholar 

  5. 5. P.C. Hayes: Steel Res. Int., 2011, vol. 82, pp. 480-93.

    Article  Google Scholar 

  6. 6. Y.K. Rao: Metall. Mater. Trans. B, 1979, vol. 10B, pp. 243-55.

    Article  Google Scholar 

  7. 7. D.H. St. John and P.C. Hayes: Metall. Mater. Trans. B, 1982, vol. 13B, pp. 117-24.

    Article  Google Scholar 

  8. 8. S.P. Matthew and P.C. Hayes: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 153-72.

    Article  Google Scholar 

  9. 9. S.P. Matthew, T.R. Cho, and P.C. Hayes: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 733-41.

    Article  Google Scholar 

  10. 10. D.H. St. John, S.P. Matthew, and P.C. Hayes: Metall. Mater. Trans. B, 1984, vol. 15B, pp. 709-17.

    Article  Google Scholar 

  11. 11. R. Nicolle and A. Rist: Metall. Mater. Trans. B, 1979, vol. 10B, pp. 429-38.

    Article  Google Scholar 

  12. 12. H. Wang and H.Y. Sohn: ISIJ Int., 2011, vol. 51, pp. 906-12.

    Article  Google Scholar 

  13. 13. M.C. Bagatini, V. Zymla, E. Osorio, and A.C.F. Vilela: ISIJ Int., 2011, vol. 51, pp. 1072-9.

    Article  Google Scholar 

  14. 14. M. Moukassi, P. Steinmetz, B. Dupre, and C. Gleitzer: Metall. Mater. Trans. B, 1983, vol. 14B, pp. 125-32.

    Article  Google Scholar 

  15. 15. A. Primavera, S. Cattarino, and M. Pavlicevic: Ironmaker Steelmaker, 2007, vol. 34, pp. 290-4.

    Article  Google Scholar 

  16. 16. M. Bahgat, Y. Sasaki, S. Hijino, M. Iguchi, and K. Ishii: ISIJ Int., 2004, vol. 44, pp. 2023-8.

    Article  Google Scholar 

  17. 17. M. Bahgat, Y. Sasaki, S. Hijino, M. Iguchi, and K. Ishii: ISIJ Int., 2005, vol. 45, pp. 657-61.

    Article  Google Scholar 

  18. 18. Y. Sasaki, M. Bahgat, M. Iguchi, and K. Ishii: ISIJ Int., 2005, vol. 45, pp. 1077-83.

    Article  Google Scholar 

  19. 19. I. Saeki, T. Ikeda, K. Ohno, T. Sato, and S. Kurosawa: Tetsu-to-Hagane, 2011, vol. 97, pp. 12-8.

    Article  Google Scholar 

  20. 20. R. Hudson: Met. Finish., 1985, vol. 83, pp. 59-61.

    Google Scholar 

  21. 21. R. Hudson: Met. Finish., 1985, vol. 83, pp. 73-80.

    Google Scholar 

  22. 22. J. Shi, D.R. Wang, Y.D. He, H.B. Qi, and G. Wei: Mater. Lett., 2008, vol. 62, pp. 3500-2.

    Article  Google Scholar 

  23. 23. C. Guan, J. Li, N. Tan, Y.Q. He, and S.G. Zhang: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 15116-24.

    Article  Google Scholar 

  24. 24. R.Y. Chen and W.Y.D. Yuen: Oxid. Met., 2000, vol. 53, pp. 539-60.

    Article  Google Scholar 

  25. 25. R.Y. Chen and W.Y.D. Yuen: Oxid. Met., 2001, vol. 56, pp. 89-118.

    Article  Google Scholar 

  26. 26. W.H. Kim, S. Lee, S.M. Kim, and D.J. Min: Int. J. Hydrogen Energy, 2013, vol. 38, pp. 4194-200.

    Article  Google Scholar 

  27. 27J. D. Hancock and J.H. Sharp: J. Am. Ceram. Soc., 1972, vol. 55, pp. 74-7.

    Article  Google Scholar 

  28. 28. A. Ortega: Thermochim. Acta., 1996 vol. 284, pp. 379-87.

    Article  Google Scholar 

  29. 29. K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymanski, and T. Wiltowoski: Int. J. Hydrogen Energy, 2005, vol. 30, pp. 1543-54.

    Article  Google Scholar 

  30. 30. A. Pineau, N. Kanari, and I. Gaballah: Thermochim. Acta., 2006, vol. 447, pp. 89-100.

    Article  Google Scholar 

  31. 31. A. Pineau, N. Kanari, and I. Gaballah: Thermochim. Acta., 2007 vol. 456, pp. 75-88.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support of the National Science & Technology Pillar program of China (Grant No. 2011BAE13B04) and National Natural Science Foundation of China (Grant No. 51204047 and 51204048) for this work. We also thank Dr. Guan Chuang from Shanghai Jiaotong University for the valuable discussions. In addition, the sponsorship of Baosteel is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongquan He or Zhenyu Liu.

Additional information

Manuscript submitted April 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Jia, T., Li, Z. et al. Isothermal Reduction of Oxide Scale on Hot-Rolled, Low-Carbon Steel in 10 pct H2-Ar. Metall Mater Trans A 47, 4845–4852 (2016). https://doi.org/10.1007/s11661-016-3647-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3647-8

Keywords

Navigation