Skip to main content

Advertisement

Log in

The Nature of Tensile Ductility as Controlled by Extreme-Sized Pores in Powder Metallurgy Ti-6Al-4V Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile properties of Ti-6Al-4V titanium alloy, sintered by a new process (sintering, phase transformation, and dehydrogenation of titanium hydride compacts, termed HSPT process), were investigated to determine how the sintering pores influence the tensile strength and ductility. It was found that the ductility in the sintered alloy is severely affected by the size of the largest pore, referred here as extreme-sized pore, even when the average volume fraction of porosity is nearly constant between a large number of samples. It is shown that the rapid decrease in ductility, with an increase in the extreme pore size, is caused by strain localization around the extreme-sized pore and early crack initiation. This crack initiation leads to fracture of the plane containing the pore thereby limiting the extent of uniform plastic strain that can be attained before fracture. Interestingly, the strength properties are, however, found to be independent of the size of the extreme-sized pore. The results are explained on the basis of stress concentration and strain localization around the extreme-sized pores. The work also reveals that if the extreme-sized pores are eliminated, PM Ti-6Al-4V alloy with high strength (~1100 MPa) and good ductility (~12 pct), which is easily comparable to a wrought Ti-6Al-4V alloy, can be achieved even at oxygen levels up to 0.4 wt pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.H. Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen and V.A. Duz: JOM, 2004, vol. 56, pp. 46-48.

    Article  Google Scholar 

  2. F.H. Froes and C. Suryanarayana: Rev. in Particulate Mater., 1933, vol. 1, pp. 233-275.

    Google Scholar 

  3. F. H. Froes and D. Eylon: Int. Mater. Rev., 1990, vol. 35, pp. 162-182.

    Article  Google Scholar 

  4. V.A.R. Henriques, C. A. A. Cairo and J.C. Bressian: Mater. Research, 2005, vol. 8, pp. 443-446.

    Article  Google Scholar 

  5. C. H. Caceres: Scrip. Metall. Mater., 1995, vol. 32, pp. 1851-1856.

    Article  Google Scholar 

  6. Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu and B.Y.Huang: Mat. Sci. Eng. A, 2006, vol. 418A, pp. 25-35.

    Article  Google Scholar 

  7. M. Hagiwara, Y. Kaieda, Y. Kawabe and S. Miura: ISIJ Int., 1991, vol. 31, pp. 922-930.

    Article  Google Scholar 

  8. O.M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson and K.A. Bondareva: Powder Metall. Met. Ceram. 2002, vol. 41, pp. 382-390.

    Article  Google Scholar 

  9. A. Carman, L.C. Zhang, O.M. Ivasishin, D.G. Savvakin, M.V. Matviychuk and E.V. Pareloma: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1686-1693.

    Article  Google Scholar 

  10. O. M. Ivasishin and D.G. Savvakin: Key Eng. Mat., 2010, vol. 436, pp. 113-121.

    Article  Google Scholar 

  11. O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak and O.B. Bondarchuk: Key Eng. Mat., 2012, vol. 520, pp. 121-132.

    Article  Google Scholar 

  12. W.R. Kerr: Metall. Trans. A, 1985, vol. 16, pp. 1077-1087.

    Article  Google Scholar 

  13. D.H. Kohn and P. Ducheyne: J. Mater. Sci., 1991, vol. 26, pp. 534-544.

    Article  Google Scholar 

  14. W.R. Kerr, P.R. Smith, M.E. Rosenblum, F.J. Gurney, Y.R. Mahajan, and L.R. Bidwell: Titanium’80, Science and Technology, Proceedings of the 4 th International Conference on Titanium, Metall. Soc. AIME. Kyoto, Japan, 1980, pp. 2477–86.

  15. W.H. Kao, D. Eylon, C.F. Yolton, F.H. Froes: Prog. Powder Metall. 1981, vol. 37, pp. 289–301.

    Google Scholar 

  16. F.H. Froes, O.N. Senkov, J.I. Qazi: Int. Mater. Rev., 2004, vol. 49, pp. 227–245.

    Article  Google Scholar 

  17. Z. Z Fang, P. Sun and H. Wang: Adv. Eng. Mat., 2012, vol. 14, pp. 383-387.

    Article  Google Scholar 

  18. B. Hariprasad, T.H. Courtney and J.K. Lee: Metall. Trans. A, 1988, vol. 19A, pp. 517-526.

    Article  Google Scholar 

  19. R.J. Bourcier, D.A.Koss, R.E. Smelser and O. Richmond: Acta Metall., 1986, vol. 34, pp. 2443-2453.

    Article  Google Scholar 

  20. A.M. Gokhale and G. R. patel: Scripta Mater., 2005, vol. 52, pp. 237-241.

    Article  Google Scholar 

  21. D. Bozic, D.Sekulic, J.Stasic, V. Rajkovic, and M. T. Jovanovic: Inter. J. Mater. Res., 2008, vol. 99, pp. 1268-1274.

    Article  Google Scholar 

  22. H. Wang, Z.Z. Fang and P. Sun: Inter. J. powder metal., 2010, vol. 46, pp. 45-57.

    Google Scholar 

  23. H. Mae, X. Teng, Y. Bai and T. Wierzbicki: J. Sol. Mech. Mater. Eng., 2008, vol. 2, pp. 924-942.

    Article  Google Scholar 

  24. R.J. Shore and R.B. McCauley: Weld Research supplement, 51st Annual Meeting, Cleveland, OH. June 8-12, 1970. pp. 311s-21s.

  25. M. K. Surappa, E. Blank and J. C. Jaquet: Scripta Met., 1986, vol. 20, pp. 1281-1286.

    Article  Google Scholar 

  26. P. Sun, Z. Z. Fang and M. Koopman: Adv. Eng. Mat., 2013, vol. 15, pp. 1007-1013.

    Google Scholar 

  27. J. D. Paramore, Z. Z. Fang, P. Sun, M. Koopman, K.S. Ravi Chandran and M. Dunstan: Scripta Mater., 2015, vol. 107, pp. 103-106.

    Article  Google Scholar 

  28. P. Sun, Z.Z. fang, M. Koopman, Y. Xia, J. paramour, K.S. Ravi Chandran, Y. Ran and J. Lu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5546-5560.

    Article  Google Scholar 

  29. K.S. Ravi Chandran and A.K. Vasudeven: Fatigue and Fracture, ASM International, Materials Park, OH, 1996, pp. 381-92.

    Google Scholar 

  30. S.H. Teoh, R. Thampuran, W.K.H. Seah and J.C.H. Goh: Biomaterials, 1993, Vol. 14, pp. 407-412.

    Article  Google Scholar 

  31. N.R. Moody, W.M. Garrison Jr., J.E. Smugeresky and J.E. Costa, Metall. Trans. A, 1993, vol. 24A, pp. 161-174.

    Article  Google Scholar 

  32. Y. Yan, G.L. Nash and P. Nash: Int. J. Fatigue, 2013, vol. 55, pp. 81-91.

    Article  Google Scholar 

  33. G. W. Mugica, D. O. Tovio, J. C. Cuyas and A. C. Gonzalez: Mater. Reseach, 2004, vol. 7, pp. 221-229.

    Article  Google Scholar 

  34. F. Cao, P. Kumar, M. Koopman, C. Lin, Z.Z. Fang and K.S. Ravi Chandran: Mater. Sci. Eng. A, 2015, vol. 630A, pp. 139-145.

    Article  Google Scholar 

  35. Y. Itoh, T. Uematsu, K. Sato, H. Miura: J. Jpn. Soc. Powder Powder Metall., 2009, vol. 56, pp. 259-263.

    Article  Google Scholar 

  36. P. Kumar, K.S. Ravi Chandran, F. Cao, P. Sun, M. Koopman, and Z. Zak Fang: Titanium-2015, Science and Technology, 13th world Conference on Titanium, TMS. San Diego, CA, August 16-20, 2015.

  37. G.R. Irvin: J. Appl. Mech., 1962, vol. 29, pp. 651-654.

    Article  Google Scholar 

  38. N. Chawla, X. Deng: mater. Sci. Eng. A, 2005, vol. 390, pp. 98-112.

    Article  Google Scholar 

  39. S. J. Polasik, J.J. Williams, N. Chawla: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 73-81.

    Article  Google Scholar 

  40. A. Hardrboletz, B. Weiss: Int. mater. Rev., 1997, vol. 42, pp. 1-44.

    Article  Google Scholar 

  41. C.H. Caceres, B.I. Selling, Mater. Sci. Eng. A, 1996, vol. 220, pp. 109-116.

    Article  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge a financial grant from the U.S. Department of Energy, Innovative Manufacturing Initiative (DEEE0005761), through the Advanced Manufacturing Office and the Office of Energy Efficiency and Renewable Energy. The initial raw powders were supplied by Ametek Specialty Metal Products, PA. We also thank James Paramore and Pei Sun for their help in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Ravi Chandran.

Additional information

Manuscript submitted July 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Ravi Chandran, K.S., Cao, F. et al. The Nature of Tensile Ductility as Controlled by Extreme-Sized Pores in Powder Metallurgy Ti-6Al-4V Alloy. Metall Mater Trans A 47, 2150–2161 (2016). https://doi.org/10.1007/s11661-016-3419-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3419-5

Keywords

Navigation