Skip to main content
Log in

Thermal Conductivity Changes in Titanium-Graphene Composite upon Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-graphene composite films were prepared on polished Ti substrates by deposition of graphene platelets from suspension followed by deposition of Ti by magnetron sputtering. The films were annealed at different temperatures up to 1073 K (800 °C) and different time periods in argon atmosphere. The annealed films were characterized by X-ray diffraction for phase identification, scanning electron microscopy for microstructure, energy-dispersive spectrometry for chemical analysis, atomic force microscopy for surface roughness, and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the interface between the composite film and Ti substrate remained continuous with the absence of voids. Oxygen concentration in the composite films has increased for higher temperature and time of annealing. TiO2 and TiC phases are formed only in the film annealed at 1073 K (800 °C). The thermal conductivity of the composite film decreased with increasing oxygen concentration. The effective thermal conductance of the film annealed at 1073 K (800 °C) was significantly lower. The interface thermal conductance between the composite film and the Ti substrate is also reduced for higher oxygen concentration. Formation of microscopic TiO2 phase bound by interface boundaries and oxygen incorporation is considered responsible for the lower thermal conductance of the Ti-graphene composite annealed at 1073 K (800 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. ASM Metal Handbook, 9th ed., vol. 2, Properties and Selection: Nonferrous Alloys and Pure Metals, p. 615, ASM International, Metals Park, OH.

  2. C.R.F. Azevedo, Engineering Failure Analysis, 2011, vol. 18, p. 1943–1962.

    Article  Google Scholar 

  3. Titanium alloy property data, http://www.matweb.com/reference/titanium.aspx

  4. C.R. Brooks: Heat treatment, structure and properties of nonferrous alloys, Ch. 9, p. 329, ASM, Metal Park, OH.

  5. H. Zheng and K. Jaganandham, J. Heat Transfer, 2014, vol. 136, pp. 061301-1-9.

    Article  Google Scholar 

  6. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahn, F. Miao and C. N. Lau, Appl. Phys. Lett., 2008, vol. 92, pp. 151911-1-3.

    Google Scholar 

  7. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahn, F. Miao and C. N. Lau, Nano Lett., 2008, vol. 8, pp. 902-907.

    Article  Google Scholar 

  8. P. G. Klemens, Int. J. Thermophysics, 2001, vol. 22, pp. 265-275.

    Article  Google Scholar 

  9. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff and L. Shi, Science, 2010, vol. 328, pp. 213-216.

    Article  Google Scholar 

  10. K. Jaganandham: J. Vac. Sci. Technol., 2014, vol. 32A, pp. 051101-1–10.

    Google Scholar 

  11. K. Jagannadham: IEEE Trans. Elect. Dev., 2016, doi:10.1109/TED.2015.2501025.

    Google Scholar 

  12. K. Jagannadham: J. Vac. Sci. Technol. A, 2016 (in press).

  13. S. T. Nguyen, R. S. Ruoff, S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, J. Yuanyuan and W. Yue, Carbon, 2007, vol. 45, pp. 1558–1565.

    Article  Google Scholar 

  14. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. Huang, J. Am. Chem. Soc., 2010, vol. 132, pp. 8180–8186

    Article  Google Scholar 

  15. A. Bagri, C. Matte, M. Acik, Y.J.Chabal, M. Chhowalla and V. B. Shenoy, Nat. Chem. 2010, vol. 2, pp. 581–587.

    Article  Google Scholar 

  16. S.H. Huh: Ch. 5 in Physics and Applications of Graphine-Experiments, Open Access Book, S. Mikhailov, ed., INTECH, 2011, pp. 73–90.

  17. K. Jagannadham, J. Electron. Mater., 2011, vol. 40, pp. 25-34.

    Article  Google Scholar 

  18. K. Jagannadham, Met. Mat. Trans. B, 2012,vol. 43, pp. 316-324.

    Article  Google Scholar 

  19. H. Zheng and K. Jagannadham, Met. Mat. Trans. A, 2014, vol. 45, pp. 2480-2486.

    Article  Google Scholar 

  20. M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai and K.E. Goodson, J. Heat Trans., 2008, vol.130, pp. 052401-1-9.

    Article  Google Scholar 

  21. W. A. Harrison, Solid State Theory, page 263, Dover Publications Inc, New York, 1979.

    Google Scholar 

  22. JB Scarborough (1958) Numerical Mathematical Analysis. Oxford University Press: Oxford

    Google Scholar 

  23. Y. K. Koh, M. H. Bae, D. G. Cahill and E. Pop, Nano Lett., 2010, vol. 10, pp. 4363-4368.

    Article  Google Scholar 

  24. P. E. Hopkins, M. Baraket, E. V. Barnat, T. E. Beechem, S. P. Kearney, J. C. Duda, J. T. Robinson and S. G. Walton, Nano Lett., 2012, vol. 12, pp. 590-595

    Article  Google Scholar 

  25. M. Kazan, A. Bryant, P. Royer and P. Masri, Surf. Sci. Reports, 2010, vol. 65, pp. 111-127.

    Article  Google Scholar 

  26. B. N. J. Persson, J. Phys. Conden. Matt., 2014, vol. 26, pp. 015009-1-3

    Article  Google Scholar 

  27. W. S. Williams, JOM, 1998, vol. 50, pp. 62-66

    Article  Google Scholar 

  28. D. T. Morelli, Phys. Rev. B, 1991, vol. 44, pp. 5453-5458.

    Article  Google Scholar 

  29. J. Fang, C. Reitz, T. Brezesinski, E. J. Nemanick, C. B. Kang, S. H. Tolbert and L. Pilon, J. Phys. Chem., 2011, vol. 115, pp. 14606-14614

    Google Scholar 

  30. Z. Huang, T. Fisher and J. Murthy, J. Appl. Phys., 2011, vol. 109, pp. 074305-1-6.

    Google Scholar 

  31. D. G. Cahill and R. O. Pohl, Phys. rev. B, 1987, vol. 35, p. 4067-4073

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University for SEM characterization, which is supported by the State of North Carolina and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasichainula Jagannadham.

Additional information

Manuscript submitted August 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannadham, K. Thermal Conductivity Changes in Titanium-Graphene Composite upon Annealing. Metall Mater Trans A 47, 907–915 (2016). https://doi.org/10.1007/s11661-015-3259-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3259-8

Keywords

Navigation