Skip to main content
Log in

Thermal and Mechanical Properties of Graphene–Titanium Composites Synthesized by Microwave Sintering

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The x wt% graphene–Ti composites (x = 0, 0.2, 0.3 and 0.4) were obtained using the powder metallurgy method. The X-ray diffraction results demonstrated that the peak intensity of graphene increased monotonically with increasing graphene content. Furthermore, the number of grain boundary and interface between graphene and matrix increased as graphene increased, which led to a sharp rise of thermal resistances. The thermal conductivity and specific heat capacity of composites initially decreased drastically with addition of graphene, but then increased with increasing graphene content from 0.2 to 0.4 wt%. This phenomenon was connected with the graphene content and the characteristics of Ti matrix (pores, grain boundary and interface between graphene and matrix). The variation of the compressive strength of composites was attributed to the interaction effects of the average grain size of the Ti matrix (d m) and the volume fraction (V f) and aspect ratio (λ) of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Geim, Science 324, 1530 (2009)

    Article  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  Google Scholar 

  3. L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F.S. Lu, P.Y. Zhang, Y. Lin, R. Fee, J.W. Connell, Y.P. Sun, Adv. Mater. 21, 2088 (2009)

    Article  Google Scholar 

  4. Y. Cui, L.D. Wang, B. Li, G.J. Cao, W.D. Fei, Acta Metall. Sin. (Engl. Lett.) 27, 937 (2014)

    Article  Google Scholar 

  5. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, G. Sundararajan, Sci. Rep. 4, 1 (2014)

    Article  Google Scholar 

  6. J.Y. Wang, Z.Q. Li, G.L. Fan, H.H. Pan, Z.X. Chen, D. Zhang, Scr. Mater. 66, 594 (2012)

    Article  Google Scholar 

  7. M. Rashad, F.S. Pan, A.T. Tao, M. Asif, S. Hussain, J. Gou, J.J. Mao, J. Ind. Eng. Chem. 23, 243 (2015)

    Article  Google Scholar 

  8. L.Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J.Q. Xu, H.S. Choi, H.F. Xu, F.E. Pfefferkorn, X.C. Li, Scr. Mater. 67, 29 (2012)

    Article  Google Scholar 

  9. M. Rashad, F.S. Pan, D. Lin, M. Asif, Mater. Des. 89, 1242 (2016)

    Google Scholar 

  10. M. Rashad, F.S. Pan, J.Y. Zhang, M. Asif, J. Alloys Compd. 646, 223 (2015)

    Article  Google Scholar 

  11. K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu, Compos. Sci. Technol. 69, 1077 (2009)

    Article  Google Scholar 

  12. I. Montealegre Melendez, E. Neubauer, P. Angerer, H. Danninger, J.M. Torralba, Compos. Sci. Technol. 71, 1154 (2011)

    Article  Google Scholar 

  13. Y.H. Zhang, L.J. Yue, L.F. Han, J.L. Chen, D.Z. Jia, F. Li, Comput. Mater. Sci. 56, 95 (2012)

    Article  Google Scholar 

  14. V. Kaushik, A.K. Shukla, V.D. Vankar, Carbon 62, 337 (2013)

    Article  Google Scholar 

  15. F.H. Latief, E.S.M. Sherif, J. Ind. Eng. Chem. 18, 2129 (2012)

    Article  Google Scholar 

  16. L.C. Stearns, M.P. Harmer, J. Am. Ceram. Soc. 79, 3013 (1996)

    Article  Google Scholar 

  17. Y.B. Tao, C.H. Lin, Y.L. He, Energy Conv. Manag. 97, 103 (2015)

    Article  Google Scholar 

  18. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules 42, 5251 (2009)

    Article  Google Scholar 

  19. S. Chatterjee, J.W. Wang, W.S. Kuo, N.H. Tai, C. Salzmann, W.L. Li, R. Hollertz, F.A. Nuesch, B.T.T. Chu, Chem. Phys. Lett. 531, 6 (2012)

    Article  Google Scholar 

  20. K.M.F. Shahil, A.A. Balandin, Nano Lett. 12, 861 (2012)

    Article  Google Scholar 

  21. E. Pop, V. Varshney, A.K. Roy, MRS Bull. 37, 1273 (2012)

    Article  Google Scholar 

  22. F.C. Wang, Z.H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu, S. Osamu, Carbon 95, 396 (2015)

    Article  Google Scholar 

  23. Y. Guo, T.B. Britton, A.J. Wilkinson, Acta Mater. 76, 1 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Postdoctoral Science Foundation (No. 2014M561795) and the Postdoctoral Scientific Research Project of Zhejiang Province, China (No. BSH1401037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Zhi Yang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, WZ., Huang, WM., Wang, ZF. et al. Thermal and Mechanical Properties of Graphene–Titanium Composites Synthesized by Microwave Sintering. Acta Metall. Sin. (Engl. Lett.) 29, 707–713 (2016). https://doi.org/10.1007/s40195-016-0445-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0445-7

Keywords

Navigation