Skip to main content
Log in

Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 (γ/α) and Acm (γ/θ) phase boundaries (the “Hultgren extrapolation”). This “mutual supersaturation” criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt’s solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. One proposed criterion is an upper growth rate of the proeutectoid constituent at which pearlitic cementite nucleation at the migrating interface is viable.[2426] Another criterion is the equilibration of the chemical potential of carbon between the proeutectoid and remaining austenite phases, subsequent to earlier stages of discontinuity in carbon chemical potential.[27] Detailed growth kinetics studies of proeutectoid phases[2832] and consideration of kinetics changes after soft impingement[3335] are the key to testing these proposed criteria.

  2. A parallel argument applies for the case of hypereutectoid steels.[77]

  3. More significant departures from LE, such as might originate from to a strong solute drag effect or other nonchemical origins could decrease the effective γ/γ interface composition to as low as the bulk austenite composition C 0. Since C 0 < Acm when C 0 lies outside the Hultgren extrapolation, this extreme condition will prevent cementite nucleation and pearlite initiation. However, such extreme conditions have scarcely been documented for pearlite and, at most, appear to be the rare exception, not the rule.

  4. There are also kinetic advantages for cementite nucleating heterogeneously at pre-existing ferrite-austenite interfaces, provided their rate of migration is slow enough to allow the embryo to grow to critical size before being overrun.[24,26]

  5. There is a thermodynamically required minimum amount of solute partitioning between the pearlitic phases themselves.[6] It is assumed that the ferrite and cementite do not appreciably deviate from their metastable equilibrium carbon compositions given by the extrapolated α/γ + α and θ/γ + θphase boundaries. It turns out there is a generally wide latitude for nonequilibrium partitioning of many substitutional alloy elements such as Mn, for which thermodynamically minimum partitioning requirements can be evaluated.[6]

  6. In support of this, Cahn and Hagel pointed out that the kinetic parameter α (a function of growth rate, spacing, and diffusivity), as it varies vs. bulk carbon content, neither undergoes a maximum or minimum at the eutectoid composition nor suffers other discontinuities as might be expected upon crossing the Ae3 or Acm if the joint supersaturation criterion was required for pearlite growth.[6]

References

  1. H.C. Sorby: J. Iron Steel Inst., 1886, vol. 1, pp. 140-147.

    Google Scholar 

  2. N.T. Belaiew: J. Iron Steel Inst., 1922, vol. 105, pp. 201-239.

    Google Scholar 

  3. N.T. Belaiew: Proc. Roy. Soc. (London), 1925, vol. A108, pp. 295-306.

    Article  Google Scholar 

  4. J.R. Vilella, G.E. Guellich and E.C. Bain: Trans. ASM, 1936, vol. 24, pp. 225-261.

    Google Scholar 

  5. R.F. Mehl and W.C. Hagel: Prog. Met. Phys., 1956, vol. 6, pp. 74-134.

    Article  Google Scholar 

  6. J.W. Cahn and W.C. Hagel: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp 131–92.

  7. M. Hillert: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp 197–237.

  8. N. Ridley: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp 201–36.

  9. N. Ridley: Metall. Trans. A, 1984, vol. 15A, pp. 1019-1036.

    Article  Google Scholar 

  10. B.A. MacDonald: Key Engineering Materials, 1993, vol. 84-85, pp. 62-128.

    Article  Google Scholar 

  11. P.R. Howell: Mater. Char., 1998, vol. 40, pp. 227-260.

    Article  Google Scholar 

  12. D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth and O.D. Sherby: JOM, 1993, vol. 45 (8), pp. 40-46.

    Article  Google Scholar 

  13. E.M. Taleff, C.K. Syn, D.R. Leseur and O.D. Sherby: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 111-118.

    Article  Google Scholar 

  14. D.R. Lesuer, C.K. Syn, and O.D. Sherby: in Investigations and Applications of Severe Plastic Deformation, T.C. Lowe and R.Z. Valiev, eds., Kluwer, Dordrecht, 2000, pp. 357–66.

  15. K.E. Easterling: Introduction to the Physical Metallurgy of Welding. (Butterworths, London, 1983).

    Google Scholar 

  16. G. Krauss: Steels: Processing, Structure, and Performance, 3rd ed. (ASM, Materials Park, OH, 2005).

    Google Scholar 

  17. J.F. Lancaster: Metallurgy of Welding, 6 th ed. (Woodhead: Cambridge, 1999).

    Book  Google Scholar 

  18. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, London, 1992).

    Book  Google Scholar 

  19. J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed. (Elsevier, New York, 2001).

    Google Scholar 

  20. L.E. Samuels: Light Microscopy of Carbon Steels, revised ed. (ASM, Materials Park, OH, 1999), p. 241.

    Google Scholar 

  21. K. Honda: J. Iron Steel Inst., 1926, vol. 114, pp. 417-422.

    Google Scholar 

  22. R.F. Mehl: in Hardenability of Alloy Steels., ASM, Cleveland, OH, 1939, pp. 1–65.

  23. A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915-1005.

    Google Scholar 

  24. M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan and Y. Higo: ISIJ Int., 1992, vol. 32, pp. 306-315.

    Article  Google Scholar 

  25. C. Capdevila, F.G. Caballero and C. García de Andrés: Acta Mater., 2002, vol. 50, pp. 4629-4641.

    Article  Google Scholar 

  26. H.I. Aaronson, M.R. Plichta, G.W. Franti and K.C. Russell: Metall. Trans. A, 1978, vol. 9A, pp. 363-371.

    Article  Google Scholar 

  27. G.P. Krielaart, M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer and S. van der Zwaag: Z. Metallkunde, 1994, vol. 85, pp. 756-765.

    Google Scholar 

  28. J.B. Gilmour, G.R. Purdy and J.S. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 1455-1464.

    Article  Google Scholar 

  29. E.B. Damm: Ph.D. Dissertation, Colorado School of Mines (Golden, CO, 2006).

  30. W.T. Reynolds, Jr., and H.I. Aaronson: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp 155–200.

  31. H.K.D.H. Bhadeshia: Prog. Mater. Sci., 1985, vol. 29, pp. 321-386.

    Article  Google Scholar 

  32. A. Van der Ven and L. Delaey: Prog. Mater. Sci., 1996, vol. 40, pp. 181-264.

    Article  Google Scholar 

  33. C.G. de Andres, C. Capdevila, F.G. Caballero and H.K.D.H. Bhadeshia: Scripta Mater., 1998, vol. 39, pp.. 853-859.

    Article  Google Scholar 

  34. K. Fan, F. Liu, X.N. Liu, Y.X. Zhang, G.C. Yang, Y.H. Zhou: Acta Mater., 2008, vol. 56, pp. 4309-4318.

    Article  Google Scholar 

  35. H. Chen and S. van der Zwaag: J. Mater. Sci., 2011, vol. 46, pp. 1328-1336.

    Article  Google Scholar 

  36. Z.Q. Liu, G. Miyamoto, Z.G. Yang and T. Furuhara: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5456-5467.

    Article  Google Scholar 

  37. M. M. Aranda, B. Kim, R. Rementeria, C. Capdevila, C. García de Andrés: Metall. Mater Trans. A, 2014, vol. 45A, pp. 1778-1786.

    Article  Google Scholar 

  38. M. Hillert: J. Appl. Phys, 1986, vol. 60, pp. 1868-1876.

    Article  Google Scholar 

  39. R.E. Hackenberg: in Phase Transformations in Steels, E. Pereloma and D.V. Edmonds, eds., Woodhead, Cambridge, 2012, vol. 1, pp. 3–55.

  40. A. Hultgren: A Metallographic Study on Tungsten Steels. (Wiley: New York, 1920), p. 30.

    Google Scholar 

  41. H.C.H. Carpenter and J.M. Robertson: J. Iron Steel Inst., 1932, vol. 125, pp. 309-328.

    Google Scholar 

  42. E.S. Davenport: Trans. ASM, 1939, vol. 27, pp. 837-886.

    Google Scholar 

  43. F.C. Hull and R.F. Mehl: Trans. ASM, 1942, vol. 30, pp. 381-421.

    Google Scholar 

  44. M. Hillert: Jernkontorets Annaler, 1957, vol. 141, pp. 757-789.

    Google Scholar 

  45. W.H. Brandt: J. Appl. Phys., 1945, vol. 16, pp. 139-146.

    Article  Google Scholar 

  46. W.H. Brandt: Trans. AIME, 1946, vol. 167, pp. 405-418.

    Google Scholar 

  47. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550-595.

    Google Scholar 

  48. C. Zener: J. Appl. Phys., 1949, vol. 20, pp. 950-953.

    Article  Google Scholar 

  49. F.S. Ham: J. Appl. Phys., 1959, vol. 30, pp. 1518-1525.

    Article  Google Scholar 

  50. K. Hashiguchi and J.S. Kirkaldy, Scand. J. Metall., 1984, vol. 13, pp. 240-248.

    Google Scholar 

  51. M. Hillert: Acta Metall., 1971, vol. 19, pp. 769-778.

    Article  Google Scholar 

  52. K.A. Jackson, J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129-1142.

    Google Scholar 

  53. L.F. Donaghey, W.A. Tiller: Mater. Sci. Eng., 1968, vol. 3, pp. 231-239.

    Article  Google Scholar 

  54. R. Trivedi, P. Magnin, W. Kurz: Acta Metall., 1987, vol. 35, pp. 971-980.

    Article  Google Scholar 

  55. W. Kurz, R. Trivedi: Metall. Trans. A, 1991, vol. 22, pp. 3051-3057.

    Article  Google Scholar 

  56. S.C. Gill, W. Kurz: Acta Metall. Mater., 1993, vol. 41, pp. 3563-3573.

    Article  Google Scholar 

  57. B. Wei, D.M. Herlach, F. Sommer, W. Kurz: Mater. Sci. Eng., 1993, vol. A173, pp. 355-359.

    Article  Google Scholar 

  58. B. Wei, D.M. Herlach, F. Sommer, W. Kurz: Mater. Sci. Eng., 1994, vol. A181–182, pp. 1150-1155.

    Article  Google Scholar 

  59. S.C. Gill, W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 139-151.

    Google Scholar 

  60. P. Gilgien, A. Zryd, W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 3477-3487.

    Article  Google Scholar 

  61. A.V. Catalina, S. Sen, D.M. Stefanescu: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 383-394.

    Article  Google Scholar 

  62. H. Wang, F. Liu, D.M. Herlach: Journal of Crystal Growth, 2014, vol. 389, pp. 68-73.

    Article  Google Scholar 

  63. W. Kurz, R. Trivedi: Acta Metall. Mater., 1990, vol. 38, pp. 1-17.

    Article  Google Scholar 

  64. W. Kurz: Advanced Engineering Materials, 2001, vol. 3, no. 7, pp. 443-452.

    Article  Google Scholar 

  65. D. Herlach, P. Galenko, D. Holland-Moritz: Metastable Solids from Undercooled Melts, Elsevier, Amsterdam, 2007.

    Book  Google Scholar 

  66. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi: Acta Mater., 2009, vol. 57, pp. 941-971.

    Article  Google Scholar 

  67. S. Akamatsu, G. Faivre, S. Moulinet: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2039-2048.

    Article  Google Scholar 

  68. R.M. Sharp, A. Hellawell: Journal of Crystal Growth, 1969, vol. 5, pp. 155-161.

    Article  Google Scholar 

  69. R.M. Sharp, A. Hellawell: Journal of Crystal Growth, 1970, vol. 6, pp. 253-260.

    Article  Google Scholar 

  70. G.F. Bolling, R.H. Richman: Metall. Trans., 1970, vol. 1, pp. 2095-2104.

    Article  Google Scholar 

  71. F.M.A. Carpay: International Metals Reviews, 1978, vol. 23, pp. 1-18.

    Article  Google Scholar 

  72. D.D. Pearson, J.D. Verhoeven: Metall. Trans. A, 1984, vol. 15A, pp. 1037-1045.

    Article  Google Scholar 

  73. J.D. Verhoeven, D.D. Pearson: Metall. Trans. A, 1984, vol. 15A, pp. 1047-1054.

    Article  Google Scholar 

  74. J.W. Christian: The Theory of Transformations in Metals and Alloys, 1st ed. (Pergamon, Oxford, 1965).

    Google Scholar 

  75. J.C. Fisher: in Thermodynamics in Physical Metallurgy, ASM, Cleveland, OH, 1950, pp. 201–41.

  76. M.A. Mangan and G.J. Shiflet: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2767-2781.

    Article  Google Scholar 

  77. M.E. Nicholson: Trans. AIME, 1954, vol. 200, pp. 1071-1074.

    Google Scholar 

  78. S.E. Offerman, L.J.G.W Van Wilderen, N.H. Van Dijk, J. Sietsma, M.T. Rekveldt, and S. Van der Zwaag: Acta Mater., 2003, vol. 51, pp. 3927–38.

  79. H.J. Lee, G. Spanos, G.J. Shiflet and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 1129-1140.

    Article  Google Scholar 

  80. C. García De Andrés, M.J. Bartolomé, C. Capdevila, D. San Martín, F.G. Caballero, and V. López: Mater. Char., 2001, vol. 46, pp. 389–98.

  81. G.F. Vander Voort, A. Roósz: Metallography, 1984, vol. 17, pp. 1-17.

    Article  Google Scholar 

  82. M. Hillert: in Proceedings of an International Conference on Solid-Solid Phase transformations, H.I. Aaronson eds., TMS-AIME, Warrendale, PA, 1982, pp 789–806.

  83. M. Hillert: in The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, pp 231–247.

  84. S. S. Babu, H. K. D. H. Bhadeshia: J. Mater. Sci. Lett., 1995, vol. 14, pp. 314-316.

    Article  Google Scholar 

  85. J.W. Cahn and W.G. Hagel: Acta Metall., 1963, vol. 11, pp. 561-574.

    Article  Google Scholar 

Download references

Acknowledgments

MMA and CC acknowledge financial support from Spanish Ministerio de Ciencia e Innovación in the form of a Coordinate Project (ENE2009-13766-C04-01). REH acknowledges support from the U.S. Department of Energy (contract DE-AC52-06NA25396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Capdevila.

Additional information

Manuscript submitted August 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranda, M.M., Rementeria, R., Capdevila, C. et al. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?. Metall Mater Trans A 47, 649–660 (2016). https://doi.org/10.1007/s11661-015-3249-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3249-x

Keywords

Navigation