Skip to main content
Log in

Microstructure of CrMnNi Cast Steel After Explosive-Driven Flyer-Plate Impact at Room Temperature and Below

  • Symposium: CRC799 Contribution
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A low-carbon metastable austenitic CrMnNi cast steel was investigated under shock conditions in a flyer-plate impact test. The samples were impacted by aluminum flyer-plates with impact velocities of 620 ± 30 m/s. Depending on deformation temperature and strain rate, the material exhibited different deformation mechanisms (dislocation glide, martensitic transformation, and mechanical twinning), which determined the microstructural evolution and mechanical behavior. Flyer-plate impact tests were carried out at 213 K and 293 K (−60 °C and +20 °C). A soft recovered sample revealed microstructural changes directly after impact. The subsequent microstructural investigations via light-optical microscopy and scanning electron microscopy revealed that transformation-induced plasticity (TRIP effect) was the primary deformation mechanism. Moreover, it was possible to quantify the martensite volume fraction by different methods and to identify the hcp ε-martensite phase as an intermediate transformation stage. A decrease in temperature also increased the driving force for the martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–253.

    Article  Google Scholar 

  2. [2] A. Weiß, H. Gutte, A. Jahn and P. Scheller: Materialwiss. Werkstofftech., 2009, vol. 40, pp. 606–611.

    Article  Google Scholar 

  3. [3] B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–795.

    Article  Google Scholar 

  4. [4] O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  5. [5] L. Krüger, S. Wolf, S. Martin, U. Martin, A. Jahn, A. Weiß and P. R. Scheller: Steel Res. Int., 2011, vol. 82, pp. 1087–1093.

    Article  Google Scholar 

  6. L. Krüger, S. Wolf, U. Martin, P. Scheller, A. Jahn, and A. Weiß: Proceedings of the DYMAT 2009—9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, EDP Sciences, Brussels, Belgium, 2009, pp. 1069–74.

  7. [7] J. Talonen, P. Nenonen, G. Pape and H. Hänninen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 421–436.

    Article  Google Scholar 

  8. [8] M. B. Boslough and J. R. Asay, in: High-Pressure Shock Compression of Solids, 1 st ed., Springer Science + Business Media, New York, 1993, pp. 7–42.

    Book  Google Scholar 

  9. [9] L. E. Murr and J. A. Korbonski: Metall. Trans., 1970, vol. 1, pp. 3333–3340.

    Google Scholar 

  10. [10] L. E. Murr, K. P. Staudhammer and S. S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–635.

    Article  Google Scholar 

  11. [11] K. E. Aeberli and P. L. Pratt: J. Mater. Sci., 1985, vol. 20, pp. 316–330.

    Article  Google Scholar 

  12. [12] R. Montanari: Mater. Lett., 1992, vol. 15, pp. 73–78.

    Article  Google Scholar 

  13. [13] S. A. Maloy, G. T. Gray III., C. M. Cady, R. W. Rutherford and R. S. Hixson: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2617–2624.

    Article  Google Scholar 

  14. [14] K. Y Luo, J. Z. Lu, Y. K. Zhang, J. Z. Zhou, L. F. Zhang, F. Z. Dai, L. Zhang, J. W. Zhong and C. Y. Cui: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4783-4788.

    Article  Google Scholar 

  15. [15] B. F. Wang, Z. L. Liu, X. Y. Wang and Z. Z. Li: Mater. Sci. Eng. A, 2014, vol. 610, pp. 301-308.

    Article  Google Scholar 

  16. [16] K. Chen, C. Zheng, Z. Yuan, J. Lu, X. Ren and X. Luo: Mater. Sci. Eng. A, 2013, vol. 587, pp. 244-249.

    Article  Google Scholar 

  17. [17] J. R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 245–253.

    Article  Google Scholar 

  18. V. I. Zel’dovich, A. E. Kheifets, N. Yu. Frolova, A. K. Muzyrya and A. Yu. Simonov: Phys. Met. Metallogr., 2013, vol. 114, pp. 1031–1037

    Article  Google Scholar 

  19. [19] A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li and J. Lu: Acta Mater., 2011, vol. 59, pp. 3697–3709.

    Article  Google Scholar 

  20. [20] W. S. Lee and C. F. Lin: Scr. Mater., 2000, vol. 43, pp. 777–782.

    Article  Google Scholar 

  21. G. T. Gray III., in: High-Pressure Shock Compression of Solids, 1 st ed., Springer Science + Business Media, New York, 1993, pp. 187–216

    Book  Google Scholar 

  22. [22] G. Raiser, R. J. Clifton and M. Ortiz: Mech. Mater., 1990, vol. 10, pp. 43–58.

    Article  Google Scholar 

  23. F. Yuan and V. Prakash: Proceedings of the SEM Annual Conference, Society for Experimental Mechanics Inc., Albuquerque, 2009.

  24. H. Gutte, M. Radke, P. R. Scheller, and A. Weiß: WIPO patent WO2008009722 A1, 2008.

  25. L. Krüger, G.I. Kanel, S.V. Razorenov, L. Meyer, and G. S. Bezrouchko, Shock compression of condensed matter, AIP Conference Proceedings, 2002, vol. 620, pp. 1327

  26. [26] G. I. Kanel, S. V. Razorenov, A. A. Bogatch, A. V. Utkin, V. E. Fortov and D. E. Grady: J. Appl. Phys., 1996, vol. 79, pp. 8310–8317.

    Article  Google Scholar 

  27. L. M. Barker and R. E. Hollenback:J. Appl. Phys., 1972, vol. 43, pp. 4669–4675

    Article  Google Scholar 

  28. [28] S. Wolf, S. Martin, L. Krüger and U. Martin: Mater. Sci. Eng. A, 2014, vol. 594, pp. 72–81.

    Article  Google Scholar 

  29. [29] J. Talonen, P. Aspegren and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp 1506–1512.

    Article  Google Scholar 

  30. [30] G. V. Stepanow : Strength Mater., 1976, vol. 8, pp. 942–947.

    Article  Google Scholar 

  31. [31] G. I. Kanel : Int. J. Fract., 2010, vol. 163, pp. 173–191.

    Article  Google Scholar 

  32. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin: Spall Fracture, Springer, 2003, p. 404

    Google Scholar 

  33. [33] S. Martin, S. Wolf, U. Martin, L. Krüger and D. Rafaja: Met. Mat. Trans A, 2014 DOI 10.1007/s11661-014-2684-4.

    Google Scholar 

  34. [34] A. Weidner, S. Martin, V. Klemm, U. Martin and H. Biermann: Scr. Mater., 2011, vol. 64, pp. 513–516.

    Article  Google Scholar 

  35. [35] J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–6118.

    Article  Google Scholar 

  36. [36] G. B. Olson and M. Cohen: J. Less-Common Met., 1972, vol. 28, pp. 107–118.

    Article  Google Scholar 

  37. [37] A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger and P. R. Scheller: Steel Res. Int., 2001, vol. 82, pp. 39–44.

    Article  Google Scholar 

  38. [38] S. Wolf, S. Martin, L. Krüger, U. Martin and U. Lorenz: Steel Res. Int., 2012, vol. 83, pp. 529–537.

    Article  Google Scholar 

  39. S. Martin, S. Wolf, U. Martin, L. Krüger, and A. Jahn: Proceedings of the ESOMAT 2009, Prague, Czech Republic, Article Number 05022.

Download references

Acknowledgments

This work was supported by the German Research Foundation or Deutsche Forschungsgemeinschaft (DFG), and was created as part of the Collaborative Research Center TRIP-Matrix-Composites (SFB 799, subproject B2). The authors would like to thank Ms K. Zuber for carrying out the metallographic preparation. Special thanks also go to Dr. D. Ehinger for his help in conducting the EBSD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Eckner.

Additional information

Manuscript submitted July 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckner, R., Reichel, B., Savinykh, A.S. et al. Microstructure of CrMnNi Cast Steel After Explosive-Driven Flyer-Plate Impact at Room Temperature and Below. Metall Mater Trans A 47, 75–83 (2016). https://doi.org/10.1007/s11661-015-3222-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3222-8

Keywords

Navigation