Skip to main content
Log in

Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Chen, A. J. Pinkerton, L. Li, Z. Liu, A. T. Mistry: Mater. Des., 2011, vol. 32, pp. 495-504.

    Article  Google Scholar 

  2. R. Qiu, C. Iwamoto, S. Satonaka: J. Mater. Process. Technol., 2009, vol. 209, pp. 4186-93.

    Article  Google Scholar 

  3. G. Sierra, P. Peyre, F. Deschaux-Beaume, D. Stuart, G. Fras: Mater. Sci. Eng. A, 2007, vol. 447, pp. 197–208.

    Article  Google Scholar 

  4. H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler: Acta Mater., 2011, vol. 59, p. 1586–1600.

    Article  Google Scholar 

  5. F. Haddadi, D. Strong and P. B. Prangnell. JOM, 2012, vol. 64, pp. 407-413.

    Article  Google Scholar 

  6. F. Haddadi, Y-C. Chen, P.B. Prangnell: Mater. Sci. Technol., 2011, vol. 27, pp. 617-624.

    Article  Google Scholar 

  7. V.K. Patel, S.D. Bhole, and D.L. Chen: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2055-2066.

    Article  Google Scholar 

  8. T. Watanabe, H. Sakuyama, A. Yanagisawa: J. Mater. Process. Technol., 2009, vol. 209, pp. 5475-80.

    Article  Google Scholar 

  9. D. Bakavos, P.B. Prangnell: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6320-34.

    Article  Google Scholar 

  10. Y. Chen, A. Gholinia, P.B. Prangnell: Mater. Chem. Phys., 2012, vol. 134, pp. 459-463.

    Article  Google Scholar 

  11. W. Cheng, C. Wang: Appl. Surf. Sci., 2011, vol. 257, pp. 4663-4668.

    Article  Google Scholar 

  12. M. Eggersmann, H. Mehrer: Philos. Mag. A, 2000, vol. 80, pp. 1219-44.

    Article  Google Scholar 

  13. S. Hirose, T. Itoh, M. Makita, S. Fujii, S. Arai, K. Sasaki, H. Saka: Intermetallics, 2003, vol. 11, pp. 633-642.

    Article  Google Scholar 

  14. N. Tang, Y.P. Li, S. Kurosu, Y. Koizumi, H. Matsumoto, A. Chiba: Corros. Sci., 2012, vol. 60, pp. 32-37.

    Article  Google Scholar 

  15. W. Lee, M. Schmuecker, U. A. Mercardo, G. Biallas, S. Jung: Scr. Mater., 2006, vol. 55, pp. 355-358.

    Article  Google Scholar 

  16. C. Rest, P.J. Jacques, A. Simar: Scr. Mater., 2014, vol. 77, pp.25-28.

    Article  Google Scholar 

  17. Q. Wang, X. Leng, T. Yang, J. Yan: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 279–284.

    Article  Google Scholar 

  18. K. Wang, L. Chang, D. Gan, H. Wang: Thin Solid Films, 2010, vol. 518, pp. 1935-42.

    Article  Google Scholar 

  19. A. Bouayad, Ch. Geromett, A. Belkebir, A. Ambari: Mater. Sci. Eng. A, 2003, vol. 363, pp. 53– 61.

    Article  Google Scholar 

  20. S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, J.G. Kerbiguet: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4505-09.

    Article  Google Scholar 

  21. D. Naoi, M. Kajihara: Mater. Sci. Eng. A, 2007, vol. 459, pp. 375-382.

    Article  Google Scholar 

  22. H. Springer, A. Kostka, J.F. dos Santos, D. Raabe: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4630-42.

    Article  Google Scholar 

  23. A.R. Marder: Prog. Mater. Sci., 2000, vol. 45, pp. 191-271.

    Article  Google Scholar 

  24. S. Liu, C. Li, S. Han, Y. deng, X. Zhang: J. Alloys Compd., 2015, vol. 625, pp. 34-43.

    Article  Google Scholar 

  25. H. Yu, M. Wang, X. Sheng: J. Alloys Compd., 2013, vol. 578, pp. 208-214.

    Article  Google Scholar 

  26. G. Stechaunera, E. Kozeschnikb.: Calphad, 2014, vol. 47, pp. 92-99.

    Article  Google Scholar 

  27. R. K. W. Marceau, A. de Vaucorbeil, G. Sha, S.P. Ringer, W. J. Poole: Acta Mater., 2013, vol. 61, pp. 7085-7303.

    Article  Google Scholar 

  28. J. M. Schreiber, Z. R. Omcikus, T. J. Eden, M.M. Sharma, V. Champagne, S.N. Patankar: J. Alloys Compd., 2014, vol. 617, pp. 135-139.

    Article  Google Scholar 

  29. J. Zhao, H. Li, H. Choi, W. Cai, J.A. Abell, and X. Li: SME J Manu. Proc., 2013, vol. 15, pp. 136-140.

    Article  Google Scholar 

  30. V. N. Yeremenko, Y. V. Natanzon and V. I. Dybkov: J. Mater. Sci., 1981, vol. 16, pp. 1748– 56.

    Article  Google Scholar 

  31. S.S. Lee, T.H. Kim, S.J. Hu, W. Cai, J.A. Abell, and J. Li, ASME J Manu. Sci. Eng., 2013, vol 135(2) 021004.

    Article  Google Scholar 

  32. K. Bouché, F. Barbier, A. Coulet: Mater. Sci. Eng. A, 1998, vol. 249, pp. 167-175.

    Article  Google Scholar 

  33. H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, J. Hejazi: J. Mater. Process. Technol., 2002, vol. 124, pp. 345–352.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the EPSRC through LATEST2, Light Alloys toward Environmentally Sustainable Transport (EP/H020047/1). The authors acknowledge the China Scholarship Council (CSC, 2011612008) for financial support and would like to thank Novelis UK and Airbus UK for the provision of materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip B. Prangnell.

Additional information

Manuscript submitted on June 19, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, L., Chen, YC. et al. Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds. Metall Mater Trans A 47, 334–346 (2016). https://doi.org/10.1007/s11661-015-3179-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3179-7

Keywords

Navigation