Skip to main content

Advertisement

Log in

Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic–Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tertiary creep deformation behavior of reduced activation ferritic–martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, \( \varepsilon = \varepsilon_{\text{o}} + \dot{\varepsilon }_{\text{m}} t + \varepsilon_3{\exp }\left[ {p\left( {t - t_{\text{t}} } \right)} \right] \), considering minimum creep rate (\( \dot{\varepsilon }_{\text{m}} \)) instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ‘p.’ The relationships between (1) tertiary parameter ‘p’ with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate \( \dot{\varepsilon }_{\text{f}} \) with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ‘p’ with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R. L. Klueh, D. S. Gelles and T.A. Lechtenberg, Journal of Nuclear Materials, 141-143 (1986) 1081-1087.

    Article  Google Scholar 

  2. M. Victoria, N. Baluc and P. Spätig: Nuclear Fusion, 41 (2001) 1047-1053.

    Article  Google Scholar 

  3. F. Abe, T. Noda, H. Araki and M. Okada: J. Nucl. Sci. Tech., 31 (1994) 279-292.

    Article  Google Scholar 

  4. G. Yu, N. Nita, N. Baluc; Fusion Engineering and Design 75–79 (2005) 1037–1041.

    Article  Google Scholar 

  5. Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, Journal of Nuclear Materials 367–370 (2007) 117–121.

    Article  Google Scholar 

  6. A.-A.F. Tavassoli, J.-W. Rensman, M. Schirra, K. Shiba; Fusion Engineering and Design 61-62 (2002) 617-628.

    Article  Google Scholar 

  7. T. Hasegawa, Y. Abe, Y. Tomita. N. Maruyama and M. Sugiyama; ISIJ International, Vol. 41 (2001), No. 8, pp. 922–929.

    Article  Google Scholar 

  8. J. Vanaja, K. Laha, R. Mythili, K.S. Chandravathi, S. Saroja and M.D. Mathew; Materials Science and Engineering A, 533 (2012) 17– 25.

    Article  Google Scholar 

  9. F. Abe, H. Araki, and T. Noda; Met. Trans A, Vol. 22A (1991) 2225-2235.

    Article  Google Scholar 

  10. A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, P.J. Ennis; Journal of Achievements in materials and manufacturing Engineering, Vol. 19, (2006) 43-48.

    Google Scholar 

  11. P. Fernández, A.M. Lancha, J. Lapeña, R. Lindau, M. Rieth, M. Schirra, Fusion Eng. Des. 75–79 (2005) 1003–1008.

    Article  Google Scholar 

  12. E. Isaac Samuel, B.K. Choudhary, K. Bhanu Sankara Rao, and B. Raj: Pressure Vessels, and Piping: Materials and Properties, Narosa Publishing House, New Delhi, India, 2008, pp. 83–100.

    Google Scholar 

  13. P. G. McVetty, Mech. Engng 56, 149 (1934).

    Google Scholar 

  14. F. Garofalo: Fundamentals of Creep and Creep Rupture in Metals. Macmillan, New York, 1965.

    Google Scholar 

  15. G.A. Webster, A.P.D. Cox, and J.E. Dorn: Metal. Sci. J., 1969, vol. 3, pp. 221–25.

    Article  Google Scholar 

  16. P.W. Davies, W.J. Evans, K.R. Williams, and B. Wilshire: Scripta Metall., 1969, vol. 3, pp. 671–674.

    Article  Google Scholar 

  17. Dobeš F., Čadek J.: Kovové Mater.19 (1981) 31.

    Google Scholar 

  18. F. Abe and S. Nakazawa: Metall. Trans. A, 1992, vol. 23A, pp. 3025–3034.

    Article  Google Scholar 

  19. S.G. Hong, W.B. Lee, and C.G. Park: J. Nucl. Mater., 2001, vol. 288, pp. 202–207.

    Article  Google Scholar 

  20. J. Cermak, J. Kucera, B. Million, and J. Krumpos: Kov. Mater., 1980, vol. 18, pp. 537–547.

    Google Scholar 

  21. NIMS creep data sheet, Atlas of creep deformation property No. D-1, 2007.

  22. K. Kimura, K. Sawada, and H. Kushima: Proc. 3rd Symp. Heat Res. Steels Alloys High Effic, USC Power Plants, Japan, 2009.

  23. B. Wilshire, P.J. Scharning, Int. Mater. Rev. 53 (2008) 91–104.

    Article  Google Scholar 

  24. F.C. Monkman, N.J. Grant; Proc. Am. Soc. Test. Mater. 56 (1956) 593.

    Google Scholar 

  25. N.J. Grant and A.W. Mullendore: Deformation Fracture at Elevated Temperatures, MIT Press, Cambridge, Mass, 1965.

    Google Scholar 

  26. P. W. Davies and K. R. Williams; Acta Metall., Vol. 17, (1969) 897-903.

    Article  Google Scholar 

  27. J. Vanaja, K Laha, and M.D. Mathew; Metallurgical and Materials Transactions A, Vol. 45A (2014) 5076-5084.

    Article  Google Scholar 

  28. W.J. Evans and B. Wilshire: Metall. Trans., 1970, vol. 1, pp. 2133–2139.

    Article  Google Scholar 

  29. C. Phaniraj, M. Nandagopal, S.L. Mannan, and P. Rodriguez and B. P. Kashyap: Acta Mater., 1996, vol. 44 (10), pp. 4059-4069.

    Article  Google Scholar 

  30. B.K. Choudhary, C. Phaniraj, K. Bhanu Sankara Rao, and S.L. Mannan: ISIJ Int., 2001, vol. 41, pp. S73–S80.

    Article  Google Scholar 

  31. M. Maldini and V. Lupinc; Scripta Metall. Mater., 1995, vol. 32, No. 3, pp. 337-342.

    Article  Google Scholar 

  32. F.A. Leckie, D.R. Hayhurst, Acta Metall. 25 (1977) 1059–1070.

    Article  Google Scholar 

  33. M.F. Ashby, B.F. Dyson: Advances in Fracture Research, Pergamon Press, Oxford, 1984, vol. 1, pp. 3–30.

    Google Scholar 

  34. B.F. Dyson, T.B. Gibbons, Acta Metall. 35 (1987) 2355–2369.

    Article  Google Scholar 

  35. S. Goyal, K. Laha, S. Panneer Selvi and M. D. Mathew; Materials at High Temperatures, 2014, vol. 31, no.3, pp. 211-220.

    Article  Google Scholar 

  36. L. Tan, Y. Yang, J.T. Busby; Journal of Nuclear Materials 442 (2013) S13–S17.

    Article  Google Scholar 

  37. L. Tan, J.T. Busby, P.J. Maziasz, Y. Yamamoto; Journal of Nuclear Materials 441 (2013) 713–717.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. P. R. Vasudeva Rao, Director, Indira Gandhi Centre for Atomic Research (IGCAR), Dr. T. Jayakumar, Director, Metallurgy and Materials Group, and Dr. A. K. Bhaduri, Associate Director, Materials Development & Technology Group, IGCAR, for their constant encouragement and support. The collaboration with M/s. Mishra Dhatu Nigam, Hyderabad, and Institute for Plasma Research, Gujarat, India, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanaja.

Additional information

Manuscript submitted March 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanaja, J., Laha, K. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic–Martensitic Steel. Metall Mater Trans A 46, 4669–4679 (2015). https://doi.org/10.1007/s11661-015-3075-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3075-1

Keywords

Navigation