Skip to main content
Log in

Progression of Late Stage Abnormal Grain Growth of Electroformed Nanocrystalline Ni Without the Addition of Grain Refiner

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nanocrystalline (nc) metals are very attractive research materials due to the many beneficial properties the nc structure offers. However, the thermal stability of the nc structure is often of concern due to its high energy state. One curious phenomenon, often reported in nc Ni, is the occurrence of a late stage abnormal grain growth (AGG) which results in the appearance of abnormal-sized grains with faceted grain boundaries. Previously, it was reported that such an AGG stage was brought on by a critical S concentration at certain boundaries. On the contrary, a late stage AGG was observed in electroformed nc Ni without intentionally added additives, including those containing S. The objective of this study is to further elucidate on the initiation and growth of these faceted boundaries. The progression of this AGG stage in electroformed Ni has been systematically investigated by utilizing optical and electron microscopy. Clearly, the late stage AGG did not require a critical S concentration to occur in this case. Moreover, these faceted boundaries were found to be highly stable once its planar nature is fully developed suggesting that the previous focus on the rapid migration of these faceted boundaries may be misplaced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B Viswanathan: Nano Materials, Alpha Science International, Oxford, U.K., 2009.

    Google Scholar 

  2. J. K Dennis and T. E Such: Nickel and Chromium Plating, Woodhead Pub., Cambridge, 1993.

    Book  Google Scholar 

  3. George A. Di Bari: Met. Finish., 2000, vol. 98, pp. 270–88.

    Article  Google Scholar 

  4. Lawrence J. Durney: Electroplating Engineering Handbook, 4th ed, Van Nostrand Reinhold, New York, 1984.

    Book  Google Scholar 

  5. A.M. El-Sherik, U. Erb, and J. Page: Surf. Coat. Technol., 1997, vol. 88, pp. 70–78.

    Article  Google Scholar 

  6. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust: Scr. Metall. Mater., 1991, vol. 25, pp. 2711–16.

    Article  Google Scholar 

  7. Manish Chauhan and Farghalli A. Mohamed: Mater. Sci. Eng. A, 2006, vol. 427, pp. 7–15.

    Article  Google Scholar 

  8. L. Cheng and G.D. Hibbard: Mater. Sci. Eng. A, 2008, vol. 492, pp. 128–33.

    Article  Google Scholar 

  9. Á. Cziráki, Z. Tonkovics, I. Geröcs, B. Fogarassy, I. Groma, E. Tóth-Kádár, T. Tarnóczi, and I. Bakonyi: Mater. Sci. Eng. A, 1994, vol. 179-180, pp. 531–35.

    Article  Google Scholar 

  10. F. Dalla, H. Van Swygenhoven, and M. Victoria: Acta Mater., 2002, vol. 50, pp. 3957–70.

    Article  Google Scholar 

  11. G.D Hibbard, J.L McCrea, G Palumbo, K.T Aust, and U Erb: Scr. Mater., 2002, vol. 47, pp. 83–87.

    Article  Google Scholar 

  12. G.D. Hibbard, Uwe Erb, K.T. Aust, U. Klement, and G. Palumbo: Mater. Sci. Forum, 2002, vol. 386-388, pp. 387–96.

    Article  Google Scholar 

  13. M.C. Iordache, S.H Whang, Z Jiao, and Z.M. Wang: Nanostructured Mater., 1999, vol. 11, pp. 1343–49.

    Article  Google Scholar 

  14. U. Klement, U. Erb, and K.T. Aust: Nanostructured Mater., 1995, vol. 6, pp. 581–84.

    Article  Google Scholar 

  15. U. Klement, U. Erb, A.M. El-Sherik, and K.T. Aust: Mater. Sci. Eng. A, 1995, vol. 203, pp. 177–86.

    Article  Google Scholar 

  16. Shigeaki Kobayashi and Youhei Kashikura: Mater. Sci. Eng. A, 2003, vol. 358, pp. 76–83.

    Article  Google Scholar 

  17. S.B. Lee, N.M. Hwang, D.Y. Yoon, and M.F. Henry: Metall. Mater. Trans. A, 2000, vol. 31, pp. 985–94.

    Article  Google Scholar 

  18. J.L. McCrea: Ph.D., University of Toronto, 2002.

  19. S.C. Mehta, D.A. Smith, and U. Erb: Mater. Sci. Eng. A, 1995, vol. 204, pp. 227–32.

    Article  Google Scholar 

  20. H. Natter, M. Schmelzer, and R. Hempelmann: J. Mater. Res., 2011, vol. 13, pp. 1186–97.

    Article  Google Scholar 

  21. M. Thuvander, M. Abraham, A. Cerezo, and G.D.W. Smith: Mater. Sci. Technol., 2001, vol. 17, pp. 961–70.

    Article  Google Scholar 

  22. Ning Wang, Zhirui Wang, K.T. Aust, and U. Erb: Acta Mater., 1997, vol. 45, pp. 1655–69.

    Article  Google Scholar 

  23. C. Xiao, R.A. Mirshams, S.H. Whang, and W.M. Yin: Mater. Sci. Eng. A, 2001, vol. 301, pp. 35–43.

    Article  Google Scholar 

  24. G.D. Hibbard, V. Radmilovic, K.T. Aust, and U. Erb: Mater. Sci. Eng. A, 2008, vol. 494, pp. 232–38.

    Article  Google Scholar 

  25. Sadahiro Tsurekawa, Tatsuya Fukino, and Takashi Matsuzaki: Int. J. Mater. Res., 2009, vol. 100, pp. 800–05.

    Article  Google Scholar 

  26. Sang-Hyun Jung, Duk Yong Yoon, and Suk-Joong L. Kang: Acta Mater., 2013, vol. 61, pp. 5685–93.

    Article  Google Scholar 

  27. G.A. Di Bari: in Mod. Electroplat., M. Schlesinger, and M. Paunovic, eds., Wiley, Hoboken, NJ, 2011, pp. 79–114.

  28. A. M. El-Sherik and U. Erb: J. Mater. Sci., 1995, vol. 30, pp. 5743–49.

    Article  Google Scholar 

  29. A.M. El-Sherik and U. Erb: U.S. Patent US5352266 A, 1994.

  30. K.A. Darling, L.J. Kecskes, M. Atwater, J. Semones, R.O. Scattergood, and C.C. Koch: J. Mater. Res., 2013, vol. 28, pp. 1813–19.

    Article  Google Scholar 

  31. A. Godon, J. Creus, X. Feaugas, E. Conforto, L. Pichon, C. Armand, and C. Savall: Mater. Charact., 2011, vol. 62, pp. 164–73.

    Article  Google Scholar 

  32. Feng Yang, Chun-hua Li, Sheng-wei Cheng, Lei Wang, and Wen-huai Tian: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 617–23.

    Article  Google Scholar 

  33. Feng Yang, Wenhuai Tian, Chuanchao Feng, and Baosheng Wang: Acta Metall. Sin. Engl. Lett., 2009, vol. 22, pp. 383–91.

    Article  Google Scholar 

  34. G. D. Hibbard, K. T. Aust, and U. Erb: J. Mater. Sci., 2008, vol. 43, pp. 6441–52.

    Article  Google Scholar 

  35. H. Okamoto: J. Phase Equilib. Diffus., 2008, vol. 30, pp. 123–123.

    Article  Google Scholar 

  36. J. K. Heuer, P. R. Okamoto, N. Q. Lam, and J. F. Stubbins: Appl. Phys. Lett., 2000, vol. 76, p. 3403.

    Article  Google Scholar 

  37. F.J. Humphreys: Scr. Mater., 2000, vol. 43, pp. 591–96.

    Article  Google Scholar 

  38. R. Le Gall, G. Liao, and G. Saindrenan: Scr. Mater., 1999, vol. 41, pp. 427–32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate Dr. Weihuai Tian of Beijing University of Science and Technology for supplying the electroformed grain-refiner-free nc Ni used in the current study. This project is funded by the Natural Science and Engineering Research Council of Canada (NSERC) and Ontario Research Foundation (ORF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirui Wang.

Additional information

Manuscript submitted November 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwan, C.C.F., Li, Z. & Wang, Z. Progression of Late Stage Abnormal Grain Growth of Electroformed Nanocrystalline Ni Without the Addition of Grain Refiner. Metall Mater Trans A 46, 4636–4645 (2015). https://doi.org/10.1007/s11661-015-3049-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3049-3

Keywords

Navigation