Skip to main content
Log in

Measurement of Mechanical Coherency Temperature and Solid Volume Fraction in Al-Zn Alloys Using In Situ X-ray Diffraction During Casting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Danzig, J.A.; Rappaz, M. Solidification, Defects, EPFL Press: Lausanne, Switzerland, 2009.

    Book  Google Scholar 

  2. Rappaz, M.; Jacot, A.; Boettinger, W.J., Met. Mat. Trans. A 2003, 34, 467–479.

    Article  Google Scholar 

  3. J.-M. Drezet, B. Mireux, Z. Szaraz, and T. Pirling, Materials 2014, vol. 7, pp. 1165–72, http://www.mdpi.com/1996-1944/7/2/1165.

  4. Li S., Sadayappan K. and Apelian D, Int. J. of Cast Metal Res, vol. 24 (2), 2011, 88-95.

    Article  Google Scholar 

  5. Rappaz, M. Drezet, J.-M., M. Gremaud: Met. Mat. Trans. A 1999, 30, 449–455.

    Article  Google Scholar 

  6. Stangeland A, Mo A, M’Hamdi M, Viano D, Davidson A (2006). Met. Mat. Trans. A. 37: 705-714.

    Article  Google Scholar 

  7. Terzi, S.; Salvo, L.; Suery, M.; Limodin, N.; Adrien, J.; Maire, E.; Pannier, Y.; Bornert, M.; Bernard, D. and Felberbaum, M.; Scripta Mater. 2009, 61, 449–452.

    Article  Google Scholar 

  8. Suéry, M.; Terzi, S.; Mireux, B.; Salvo, L.; Adrien, J.; Maire, E. Fast, JOM 2012, 64, 83–88.

  9. Phillion, A.B.; Hamilton, R.W.; Fuloria, D.; Leung, A.C.L.; Rockett P., Connolley, T.; Lee, P.D., Acta Mater. 2011, 59, 1436–1444.

    Article  Google Scholar 

  10. Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H., Acta Mater. 2011, 59, 4933–4943.

    Article  Google Scholar 

  11. Giraud, E.; Suéry, M.; Coret, M., Met. Mat. Trans. A 2010, 41, 2257–2268.

    Article  Google Scholar 

  12. Limodin N., L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliègue, K. Madi, Acta Mater. 2009, 57, 2300–2310.

    Article  Google Scholar 

  13. Terzi S., J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, A.K. Dahle, Acta Mater. 2010, 58, 5370–5380.

    Article  Google Scholar 

  14. Drezet, J.-M.; Evans, A.; Pirling, T.; Pitié, B., Int. J. Cast Met. 2012, 25, 110–116.

    Article  Google Scholar 

  15. Chobaut N., Repper J., Pirling T., Carron D. and Drezet J-M.: in 13th International Conference on Aluminum Alloys (ICAA13), H. Weiland, A.D. Rollett, and W. A. Cassada, eds., TMS (The Minerals, Metals & Materials Society), 2012, 285–291.

  16. Robinson, J. S., et al. “Influence of quenching and aging on residual stress in Al-Zn-Mg-Cu alloy 7449.” Materials Science and Technology 28.4 (2012): 420-430.

    Article  Google Scholar 

  17. Woo W, Feng Z, Wang X-L, Brown DW, Clausen B, An K, Choo H, Hubbard CR, and David SA (2007) Science and Technology of Welding and Joining 12(4):298–303.

    Article  Google Scholar 

  18. Diamond Light Source, Oxfordshire, UK, JEEP web site http://www.diamond.ac.uk/Beamlines/Engineering-and-Environment/I12.html.

  19. Sistaninia M., Drezet J.-M., Phillion A.B. and Rappaz M., JOM 2013, 65(9), 1131-1137.

    Article  Google Scholar 

  20. Lalpoor, M., Eskin D.G., Katgermann, L., Met. Mater. Trans. A 2009, 40, 3304-3313.

    Article  Google Scholar 

  21. Alloy phase diagrams, ASM Handbook, vol. 3, ASM, 1992.

  22. Satyanarayana K. G., Journal of Materials Science, 16, 1981, 1240-1248.

    Article  Google Scholar 

  23. Le Bail, A., Duroy, H. and Fourquet, J. L. Mater. Res. Bull. 1988, 23, 447-452.

    Article  Google Scholar 

  24. Brian H. Toby, Journal of Material Science 1981, 16, 1240-1248.

    Article  Google Scholar 

  25. Du, Y., Chang, Y., Huang, B., Gong, W., Jin, Z., Xu, H., Yuan, Z., Liu, Y., He, Y. and Xie, F., Mat. Sc. and Eng. A 2003, 363, 140-151.

    Article  Google Scholar 

  26. Vernède S., Jarry P., Rappaz, M., Acta Mater. 2006, 54, 4023–4034.

    Article  Google Scholar 

  27. Sistaninia, M.; Phillion, A.B.; Drezet, J.-M.; Rappaz, M.,. Acta Mater. 2012, 60, 3902–3911.

    Article  Google Scholar 

  28. A. Nordmark, K. Ellingsen, A. Johansson, M. M’Hamdi, A. Kvithyld, A. Marson and A. Azar, Mat. Sc. Forum 2014, 794-796, 95-100.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their deep acknowledgements to the Swiss National Science Foundation, Bern, for funding (Project No. 200021_146879) and the Diamond Light Source, Oxfordshire, UK, for the provision of beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Drezet.

Additional information

Manuscript submitted March 13, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drezet, JM., Mireux, B., Kurtuldu, G. et al. Measurement of Mechanical Coherency Temperature and Solid Volume Fraction in Al-Zn Alloys Using In Situ X-ray Diffraction During Casting. Metall Mater Trans A 46, 4183–4190 (2015). https://doi.org/10.1007/s11661-015-3041-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3041-y

Keywords

Navigation