Skip to main content
Log in

Impact of Copper-Doped Titanium Dioxide Interfacial Layers on the Interface-State and Electrical Properties of Si-based MOS Devices

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current study presents the interface-state and electrical properties of silicon (Si)-based metal-oxide-semiconductor (MOS) devices using copper-doped titanium dioxide (Cu:TiO2) nanoparticles for possible applications as an interfacial layer in scaled high-k/metal gate MOSFET technology. The structural properties of the Cu:TiO2 nanoparticles have been obtained by means of X-ray diffraction (XRD), UV–Vis–NIR spectrometry, atomic force microscopy, and scanning electron microscopy measurements; they were compared with pure TiO2 thin film. With the incorporation of Cu, rutile-dominated anatase/rutile multiphase crystalline was revealed by XRD analysis. To understand the nature of this structure, the electronic parameters controlling the device performance were calculated using current–voltage (IV), capacitance–voltage (CV), and conductance–voltage (GV) measurements. The ideality factor (n) was 1.21 for the Al/Cu:TiO2/p-Si MOS device, while the barrier height ϕ b was 0.75 eV with semi-log IV characteristics. This is in good agreement with 0.78 eV measured by the Norde model. Possible reasons for the deviation of the ideality factor from unity have been addressed. From the CV measurements, the values of diffusion potential, barrier height, and carrier concentration were extracted as 0.67, 0.98 eV, and 8.73 × 1013 cm−3, respectively. Our results encourage further work to develop process steps that would allow the Cu-doped TiO2 film/Si interface to play a major role in microelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.H. Nicollian and J.R. Brews: MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, 2002.

    Google Scholar 

  2. G.D. Wilk, R.M. Wallace, and J.M. Anthony: J. Appl. Phys., 2001, vol. 89, pp. 5243–73.

    Article  Google Scholar 

  3. C. Lee, P. Ghosez, and X. Gonze: Phys. Rev. B, 1994, vol. 50, pp. 13379–87.

    Article  Google Scholar 

  4. O. Carp, C.L. Huisman, and A. Reller: Prog. Solid State Chem., 2004, vol. 32, pp. 33–177.

    Article  Google Scholar 

  5. N.R. Mathews, E.R. Morales, M.A. Cortes–Jacome, and J.A.T. Antonio: Sol. Energy, 2009, vol. 83, pp. 1499–508.

    Article  Google Scholar 

  6. H.S. Kim, D.C. Gilmer, S.A. Campbell, and D.L. Polla: Appl. Phys. Lett., 1996, vol. 69, pp. 3860–62.

    Article  Google Scholar 

  7. S. Sönmezoğlu: Curr. Nanosci., 2013, vol. 9, pp. 39–45.

    Google Scholar 

  8. S. Sönmezoğlu, G. Çankaya, and N. Serin: Appl. Phys. A, 2012, vol. 107, pp. 233–41.

    Article  Google Scholar 

  9. W. Kallel, S. Bouattour, and A.W. Kolsi: J. NonCryst. Solids, 2006, vol. 352, pp. 3970–78.

    Article  Google Scholar 

  10. G. Yang, Z. Jiang, H. Shi, T. Xiao, and Z. Yan: J. Mater. Chem., 2010, vol. 20, pp. 5301–09.

    Article  Google Scholar 

  11. R. Chauhan, A. Kumar, and R.P. Chaudhary: J. SolGel Sci. Technol., 2012, vol. 61, pp. 585–91.

    Article  Google Scholar 

  12. Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, and G. Shao: Mater. Lett., 2011, vol. 65, pp. 2051–54.

    Article  Google Scholar 

  13. J. Navas, C. Fernandez-Lorenzo, T. Aguilar, R. Alcantara, and J. Martin-Calleja: Phys. Status Solidi A, 2012, vol. 209, pp. 378–85.

    Article  Google Scholar 

  14. S.K. Kim, G.J. Choi, S.Y. Lee, M. Seo, S.W. Lee, J.H. Han, H.S. Ahn, S. Han, and C.S. Hwang: Adv. Mater., 2008, vol. 20, pp. 1429–35.

    Article  Google Scholar 

  15. S. Sönmezoğlu: Mater. Performance, 2014, vol. 29, pp. 3–7.

    Google Scholar 

  16. S. Sönmezoğlu, B. Erdoğan, and İ. Askeroğlu: Bull. Mater. Sci., 2013, vol. 36, pp. 1239–45.

    Article  Google Scholar 

  17. S. Sönmezoğlu and S. Akın: Sens. Actuators A, 2013, vol. 199, pp. 18–23.

    Article  Google Scholar 

  18. A. Gültekin, G. Karanfil, F. Özel, M. Kuş, R. Say, and S. Sönmezoğlu: J. Phys. Chem. Solids, 2014, vol. 75, pp. 775–81.

    Article  Google Scholar 

  19. A. Gültekin and S. Sönmezoğlu: Z. Phys. Chemie, 2014, vol. 228, pp. 649–62.

    Article  Google Scholar 

  20. F.F. Cao, S. Xin, Y.G. Guo, and L.J. Wan: Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 2014–20.

    Article  Google Scholar 

  21. M. Sahu and P. Biswas: Nanoscale Res. Lett., 2011, vol. 6, pp. 441–44.

    Article  Google Scholar 

  22. Ş. Karataş and F. Yakuphanoğlu: J. Alloys Compd., 2012, vol. 537, pp. 6–11.

    Article  Google Scholar 

  23. S. Akın and S. Sönmezoğlu: Mater. Performance, 2012, vol. 27, pp. 342–49.

    Google Scholar 

  24. S. Sönmezoğlu: Appl. Phys. Express, 2011, vol. 4, pp. 104104–06.

    Article  Google Scholar 

  25. W. Kern: Handbook of Semiconductor Cleaning Procedure, Noyes, New York, 1993.

    Google Scholar 

  26. O. Pakma, N. Serin, T. Serin, and Ş. Altındal: J. Sol-Gel Sci. Technol., 2009, vol. 50, pp. 28–34.

    Article  Google Scholar 

  27. S. Sönmezoğlu, G. Çankaya, and N. Serin: Mater. Performance, 2012, vol. 27, pp. 251–56.

    Google Scholar 

  28. P. Ruan, J. Qian, Y. Xu, H. Xie, C. Shao, and X. Zhou: Cryst. Eng. Comm., 2013, vol. 15, pp. 5093–99.

    Article  Google Scholar 

  29. D.A.H. Hanaor and C.C. Sorrell: J. Mater. Sci., 2011, vol. 46, pp. 855–74.

    Article  Google Scholar 

  30. S. Hishita, I. Mutoh, K. Koumoto, and H. Yanagida: Ceram. Int., 1983, vol. 9, pp. 61–7.

    Article  Google Scholar 

  31. M.K. Akhtar and S.E. Pratsinis: J. Am. Ceram. Soc., 1992, vol. 75, pp. 3408–16.

    Article  Google Scholar 

  32. M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, and M. Notaro: Sens. Actuators B, 1999, vol. 58, pp. 310–17.

    Article  Google Scholar 

  33. B.D. Cullity: Elements of X–Ray Diffraction, Addison–Wesley Publishing Company Incorporations, London, 1978.

    Google Scholar 

  34. V.S Grunin, G.D. Davtyan, V.A. Ioffe, and I.B. Patrina: Phys. Status Solidi B, 1976, vol. 77, pp. 85–92.

    Article  Google Scholar 

  35. R.D. Shannon: Acta Crystallogr. A, 1976, vol. 32, pp. 751–67.

    Article  Google Scholar 

  36. M. You, T.G. Kim, and Y.M. Sung: Cryst. Growth Des., 2010, vol. 10, pp. 983–87.

    Article  Google Scholar 

  37. W. Li, C. Ni, H. Lin, C.P. Huang, and S.I. Shah: J. Appl. Phys., 2004, vol. 96, pp. 6663–68.

    Article  Google Scholar 

  38. H.Z. Zhang and J.F. Banfield: J. Phys. Chem., 2000, vol. 104, pp. 3481–87.

    Article  Google Scholar 

  39. H. Kim, J. Horwitz, W. Kim, A. Makinen, Z. Kafafi, and D. Chrisey: Thin Solid Films, 2002, vol. 539, pp. 420–21.

    Google Scholar 

  40. W. Chen, Z. Wang, Z. Lin, and L. Lin: J. Appl. Phys., 1997, vol. 82, pp. 3111–15.

    Article  Google Scholar 

  41. N.T. Ly, T.V. Hoang, T.H.L. Ngo, V.C. Nguyen, D.T. Tran, H.M. Do, D.L. Vu, X. N. Nguyen, T.H. Dao, Q.H. Le, M.H. Nguyen, and V.H. Le: Adv. Nat. Sci: Nanosci. Nanotech., 2012, vol. 3, pp. 045009–13.

    Google Scholar 

  42. N. Wongpisutpaisan, N. Vittayakorn, A. Ruangphanit, and W. Pecharapa: Sains Malays., 2013, vol. 42, pp. 175–81.

    Google Scholar 

  43. K. Lalitha, G. Sadanandam, V.D. Kumari, M. Subrahmanyam, B. Sreedhar, and N.Y. Hebalkar: J. Phys. Chem., 2010, vol. 114, pp. 22181–89.

    Google Scholar 

  44. E.H. Rhoderick and R.H. Williams: Metal–Semiconductor Contacts, Clarendon, Oxford, 1988.

    Google Scholar 

  45. S.M. Sze: Physics of Semiconductor Devices, John Wiley, New York, 1981.

    Google Scholar 

  46. S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, and M. Can: Thin Solid Films, 2010, vol. 518, pp. 4375–79.

    Article  Google Scholar 

  47. S. Akın, F. Özel, M. Kuş, and S. Sönmezoğlu: Philos. Mag., 2014, vol. 94, pp. 2678–91.

    Article  Google Scholar 

  48. S.K. Cheung and N.W. Cheung: Appl. Phys. Lett., 1986, vol. 49, pp. 85–87.

    Article  Google Scholar 

  49. Ö. Güllü, Ş. Aydoğan, and A. Türüt: Semicond. Sci. Technol., 2008, vol. 23, pp. 075005–09.

    Article  Google Scholar 

  50. S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, and M. Can: Solid State Sci., 2010, vol. 12, pp. 706–11.

    Article  Google Scholar 

  51. G. Chilana and R. Gupta: J. Appl. Phys., 2009, vol. 65, pp. 2859–61.

    Article  Google Scholar 

  52. H. Norde: J. Appl. Phys., 1979, vol. 50, pp. 5052–54.

    Article  Google Scholar 

  53. J.H. Werner: Appl. Phys. A, 1988, vol. 47, pp. 291–300.

    Article  Google Scholar 

  54. R.M. Cibils and R.H. Buitrago: J. Appl. Phys., 1985, vol. 58, pp. 1075–77.

    Article  Google Scholar 

  55. S. Sönmezoğlu, C.B. Durmuş, R. Taş, G. Çankaya, and M. Can: Semicond. Sci. Technol., 2011, vol. 26, pp. 055011–15.

    Article  Google Scholar 

  56. H.C. Card and E.H. Rhoderick: J. Phys. D: Appl. Phys., 1971, vol. 4, pp. 1589–601.

    Article  Google Scholar 

  57. E.H. Nicollian and A. Goetzberger: Bell Syst. Tech. J., 1967, vol. 46, pp. 1055–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savaş Sönmezoğlu.

Additional information

Manuscript submitted July 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akin, S., Sönmezoğlu, S. Impact of Copper-Doped Titanium Dioxide Interfacial Layers on the Interface-State and Electrical Properties of Si-based MOS Devices. Metall Mater Trans A 46, 4150–4159 (2015). https://doi.org/10.1007/s11661-015-3040-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3040-z

Keywords

Navigation