Skip to main content
Log in

Ellipsometric Investigation of Optical Parameters and Characterization of Spray Pyrolysis-Derived ZnO Films

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The pH value of solution is an important parameter in thin film production. In this work, ZnO films were successfully produced for various pH values (6.9 ≥ pH ≥ 3.2) by spray pyrolysis. The effects of the pH value on the optical parameters such as thickness, refractive index and extinction coefficient, structural, surface, and electrical properties were investigated by spectroscopic ellipsometry and other characterization technique. Thickness, refractive index, and extinction coefficient values were defined by spectroscopic ellipsometry technique using Cauchy–Urbach model. The thickness values of ZnO films were found to be in the range of 345 to 376 nm. The crystalline structure, orientation, and lattice parameters of the films were determined using XRD patterns. X-ray diffraction revealed that the crystallization level increased prominently with decreasing of the pH value and the best crystallization was found for pH 3.5 value. The average optical transmittance of the films was improved with changing of the pH values. Atomic force microscopic image was shown that the surface morphology improved and roughness value decreased with decrease of pH values. Electrical resistivity values of ZnO films decreased as the pH value decreased and the lowest resistivity value was found 1.1 × 10−3 Ω cm for pH 3.5 deposited films. As a result, the low pH values have a strong effect on the mentioned properties of spray pyrolysis-derived ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Major, S. Kumar, M. Bhatnagar and K. L. Chopra, Appl. Phys. Lett. 1986, vol. 49, pp. 394–96.

    Article  Google Scholar 

  2. J. B. Yoo, S. Fahrenbruch and R.H. Bube, Appl. Phys., 1999, 68, pp. 469446–99.

    Google Scholar 

  3. P. Nunes, A. Malik, B. Fernandes, E. Fortunato, P. Vilarinho and R. Martins, Surface Engineering. Surf. Instrum. Vac. Technol., 1999, vol. 52, pp. 45–49.

    Google Scholar 

  4. S. M. Rozati, Mater. Charact., 2006, vol. 57, pp. 150–53.

    Article  Google Scholar 

  5. S. M. Rozati and T. Ganj, Renew. Energy, 2004, vol. 29, pp. 1671–76.

    Article  Google Scholar 

  6. R. Martins, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, M. Bender, N. Katsarakis, V. Cimalla and G. Kiriakidis, J. Appl. Phys., 2004, vol. 96 (3), pp. 1398–1408.

    Article  Google Scholar 

  7. K. Ellmer and R. Mientus, Thin Solid Films, 2006, vol. 516, pp.4620–27.

    Article  Google Scholar 

  8. D. C. Look, Mater. Sci. Eng. B., 2001, vol. 80, pp. 383–87.

    Article  Google Scholar 

  9. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices Microstruct., 2003, vol. 34, pp. 3–32.

    Article  Google Scholar 

  10. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç: J. Appl. Phys., 2005, vol. 98, pp. 041103–301.

  11. C. Klingshirn: Phys. Stat. Sol. (b)., 2007, vol. 244, pp. 3027–73.

    Article  Google Scholar 

  12. M.S. Wu and C.H. Yang, Appl. Phys. Lett., 2007, vol. 91, pp. 033109.

    Article  Google Scholar 

  13. Z. Zhang, Y. Zhao, and M. Zhu, Appl. Phys. Lett., 2006, vol. 88 pp. 033101.

    Article  Google Scholar 

  14. M.A. Vidales-Hurtado and A. Mendoza-Galvan, Mater. Chem. Phys., 2008, vol. 107, pp. 33–38.

    Article  Google Scholar 

  15. H.W. Ryu, G.P. Choi, W.S. Lee, and J.S. Park, J. Mater. Sci., 2004, vol. 39, pp.4375–77.

    Article  Google Scholar 

  16. P. Puspharajah, S. Radhakrishna and A.K. Arof, J. Mater. Sci., 1997, vol. 32, pp. 3001–06.

    Article  Google Scholar 

  17. R. Cerc Korosec, P. Bukovec, B. Pihlar, A. SurcaVuk, B. Orel, and G. Drazic: Solid State Ion., 2003, vol. 165, pp. 191–200.

  18. H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe and M. Kamiya, et al. Appl. Phys. Lett.,2003, vol. 83, pp. 1029–31.

    Article  Google Scholar 

  19. F. Zahedi, R.S.Dariani and S.M.Rozati, Mater. Sci. Semicond. Process., 2013, vol. 16, pp.245–49.

    Article  Google Scholar 

  20. B. Ergin, E. Ketenci and F. Atay, Int. J. of Hydrogen Energy, 2009, vol. 34, pp.5249–54.

    Article  Google Scholar 

  21. N. Kavasoglu and A. S. Kavasoglu, Phys. B., 2008, vol. 434, pp. 3159–63.

    Article  Google Scholar 

  22. D. E. Motaunga, G. H. Mhlongo, I. Kortidis, S. S. Nkosi, G. F. Malgas, B. W. Mwakikunga, S. Sinha Ray and G. Kiriakidis, Appl Surf Sci.,2013, vol. 279, pp. 142–49.

    Article  Google Scholar 

  23. S. Benramache and B. Benhaoua, Superlattices Microstruct., 2012, vol. 52, pp. 1062–70.

    Article  Google Scholar 

  24. N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane and M. S. Aida, Mater. Sci. Semicond. Process., 2011, vol. 14, pp. 229–34.

    Article  Google Scholar 

  25. [25] P. Prepelita, R. Medianu, B. Sbarcea, F. Garo and M. Filipescu, Appl. Surf. Sci., 2010, vol. 256, pp.1807–11.

    Article  Google Scholar 

  26. E. Bacaksiz, M. Parlak, M. Tomakin, A. Ozcelik, M. Karakız and M. Altunbas¸ Journal of Alloys and Compounds., 2008, vol. 466, pp. 447–50.

    Article  Google Scholar 

  27. P. L. Washington, H. C. Ong, J. Y. Dai and R. P. H. Chang, Appl. Phys. Lett., 1998, vol. 72, pp. 25–27.

    Article  Google Scholar 

  28. M. Rebien,W. Henrion, M. Bar and Ch. H. Fischer, Appl. Phys. Lett., 2002, vol. 80, pp. 19–21.

    Article  Google Scholar 

  29. F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin and Y. C. Kim, J. Cryst. Growth., 2005, vol. 277, pp. 284–92.

    Article  Google Scholar 

  30. E. Dumont, B. Dugnoille and S. Bienfait, Thin Solid Films., 1999, vol. 353, pp. 93–99.

    Article  Google Scholar 

  31. C. Bundesmann, N. Ashkenov, M. Schubert, A. Rahm, H. V. Wenckstern, E. M. Kaidashev, M. Lorenz and M. Grundmann, Thin Solid Films., 2004, vol. 455, pp. 161–70.

    Article  Google Scholar 

  32. J. Garcı´a-Serrano, N. Koshizaki, T. Sasaki, G. Martı´nez-Montes and U. Pal, J. Mater. Res., 2001, vol. 16, pp.3554–59.

    Article  Google Scholar 

  33. D. Vernardou, G. Kenankis, S. Couris, E. Koudoumas, E. Kymakis and N. Katsarakis, Thin Solid Films., 2007, vol. 515, pp.8764–67.

    Article  Google Scholar 

  34. B. C. Jiao, X. D. Zhang, C. C. Wei, J. Sun, Q. Huang, Y. Zhao, Thin Solis Films, 2011, vol. 520, pp. 1323–29.

    Article  Google Scholar 

  35. M.D.L.L. Olvera, A. Maldonado, R. Asomoza, and M. Melendez-Lira, Sol. Energy Mater. Sol. Cells, 2002, vol. 71, pp. 61–71.

  36. W.D. Callister, Materials Science and Engineering-An Introduction, Wiley, New York, 1997.

    Google Scholar 

  37. R. Mamazza, D. L. Morel and C. S. Ferekides, Thin Solid Films., 2005, vol. 484, pp. 26–33.

    Article  Google Scholar 

  38. R. Ferro, J. A. Rodriguez, O. Vigil and A. Morales-Acevedo, Mater. Sci. Eng. B, 2001, vol. 87, pp.83–86.

    Article  Google Scholar 

  39. B. Joseph, K. G. Gopchandran, P. V. Thomas, P. Koshy, V. K. Vaidyan, Mater. Chem. Phys., 1999, vol. 58, pp. 71–77.

    Article  Google Scholar 

  40. A. Chen, H. Long, X.C. Li, Y. H. Li, G. Yang, P. X. Lu, Vacuum, 2009, vol. 83, no. 6, 927–30.

    Article  Google Scholar 

  41. J. Lv, W. Gang, K. Huang, J. Zhu, F. Meng, X. Song, and Z. Sun, Superlattices Microstruct., 2011, vol. 50, pp. 98–106.

    Article  Google Scholar 

  42. F. Chaabouni, M. Abaab and B.Rezig, Mater. Sci. Eng. B., 2004, vol. 109, pp. 236–40.

    Article  Google Scholar 

  43. Y. Yang, H Long, G. Yang, A. Chen, Q Zheng, P. Lu, Vacuum, 2009, vol. 83, no. 5, 892–96.

    Article  Google Scholar 

  44. P. S. Patil, P. K. Kawar and S. B. Sadale, Electrochim. Acta., 2005, vol. 50, pp. 2527–32.

    Article  Google Scholar 

  45. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay and Z. Sun, Thin Solid Films, 2006, vol. 510, no. 1-2, pp. 95–101.

    Article  Google Scholar 

  46. J. Khoshman and E. M. Kordesch, J. of Non-Cryst. Sol., 2005, vol. 351, pp. 3334–40.

    Article  Google Scholar 

  47. A. Maldonado, R. Asomoza, J. Canetas-Ortega, E. P. Zironi, R. Hernandez, R. Patino, and O. Solorza-Feria, Sol. Energy Mater. Sol. Cells, 2009. vol. 57, pp. 331–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olcay Gençyılmaz.

Additional information

Manuscript submitted October 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gençyılmaz, O., Atay, F. & Akyüz, İ. Ellipsometric Investigation of Optical Parameters and Characterization of Spray Pyrolysis-Derived ZnO Films. Metall Mater Trans A 46, 4247–4254 (2015). https://doi.org/10.1007/s11661-015-3016-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3016-z

Keywords

Navigation