Skip to main content
Log in

Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. J. Zinkle and J. T. Busby, Materials Today, 2009, vol. 12, pp.12–19.

    Article  Google Scholar 

  2. B. Weiss and R. Stickler, MT, 1972, vol. 3, pp.851–66.

    Article  Google Scholar 

  3. T. Sourmail, Materials Science and Technology, 2001, vol. 17, pp.1–14.

    Article  Google Scholar 

  4. Y. Yamamoto, M. Takeyama, Z. P. Lu, C. T. Liu, N. D. Evans, P. J. Maziasz and M. P. Brady, Intermetallics, 2008, vol. 16, pp.453–62.

    Article  Google Scholar 

  5. T.-H. Lee, C.-S. Oh, C. G. Lee, S.-J. Kim and S. Takaki, Scripta materialia, 2004, vol. 50, pp.1325–28.

    Article  Google Scholar 

  6. A. Perron, C. Toffolon-Masclet, X. Ledoux, F. Buy, T. Guilbert, S. Urvoy, S. Bosonnet, B. Marini, F. Cortial and G. Texier, Acta Materialia, 2014, vol. 79, pp.16–29.

    Article  Google Scholar 

  7. M. Schwind, J. Källqvist, J.-O. Nilsson, J. Ågren and H.-O. Andrén, Acta Materialia, 2000, vol. 48, pp.2473–81.

    Article  Google Scholar 

  8. J.-O. Andersson and N. Lange, MTA, 1988, vol. 19, pp.1385–94.

    Article  Google Scholar 

  9. K. Frisk, MTA, 1992, vol. 23, pp.639–49.

    Article  Google Scholar 

  10. B.-J. Lee, Journal of the Korean Institute of Metals and Materials, 1993, vol. 31, pp.480–89.

    Google Scholar 

  11. S. Liu, Y. Hamaguchi and H. Kuwano, J. Jpn. Inst. Met., 1986, vol. 50, pp.1023–31.

    Google Scholar 

  12. H.L. Lukas: Chromium-Molybdenum-Nickel. Refractory Metal Systems. Springer, Berlin, 2010, p. 170–81.

    Book  Google Scholar 

  13. G. Raynor and V. Rivlin, Bull. Alloy Phase Diagrams, 1981, vol. 2, pp.89–99.

    Google Scholar 

  14. N. Saunders and A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide: A Comprehensive Guide. Elsevier, 1998.

  15. Y. A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer and W. A. Oates, Progress in Materials Science, 2004, vol. 49, pp.313–45.

    Article  Google Scholar 

  16. Y. Yang, H. Bei, S. Chen, E. George, J. Tiley and Y. A. Chang, Acta Materialia, 2010, vol. 58, pp.541–48.

    Article  Google Scholar 

  17. Y. Yang and J. Busby, Journal of Nuclear Materials, 2014, vol. 448, pp.282–93.

    Article  Google Scholar 

  18. M. Hillert, Journal of Alloys and Compounds, 2001, vol. 320, pp.161–76.

    Article  Google Scholar 

  19. A. T. Dinsdale, CALPHAD, 1991, vol. 15, pp.317–425.

    Article  Google Scholar 

  20. O. Redlich and A. T. Kister, Industrial & Engineering Chemistry, 1948, vol. 40, pp.345–48.

    Article  Google Scholar 

  21. M. Hillert and M. Jarl, CALPHAD, 1978, vol. 2, pp.227–38.

    Article  Google Scholar 

  22. G. Inden: Proceedings Project Meeting, CALPHAD V, Dusseldorf, 1976. pp. 1–13.

  23. J.-M. Joubert, Progress in Materials Science, 2008, vol. 53, pp.528–83.

    Article  Google Scholar 

  24. J. Kasper, Acta Metallurgica, 1954, vol. 2, pp.456–61.

    Article  Google Scholar 

  25. J.-M. Joubert and M. Phejar, Progress in Materials Science, 2009, vol. 54, pp.945–80.

    Article  Google Scholar 

  26. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer and W. Oates, CALPHAD, 2009, vol. 33, pp.328–42.

    Article  Google Scholar 

  27. A. Denham. Silcock, J IRON STEEL INST, 1969, vol. 207, pp.582–92.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Nuclear Engineering Enabling Technology (NEET) Advanced Reactor Material Program and Light Water Reactor Sustainability Research and Development Effort, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Additional information

Manuscript submitted December 11, 2014.

Appendix

Appendix

Optimized thermodynamic model parameters for the Chi and Laves phases in the Fe-Cr-Mo-Ni system. (Other model parameters are available from literature[17]). The temperature range of the parameters is between 298.15 K and 6000 K (25 °C and 5727 °C) unless otherwise denoted. Unit is J/(mol. formula). \( G_{Fe}^{fcc,0} \), \( G_{Ni}^{fcc,0} \), and \( G_{Mo}^{bcc,0} \) are taken from the SGTE pure element database.[19]

Chi: (Cr,Fe,Ni)24(Cr,Mo)10(Cr,Fe,Ni)24

$$ \begin{aligned} G_{Fe:Mo:Ni}^{0} - 24*G_{Fe}^{fcc,0} - 24*G_{Ni}^{fcc,0} - 10*G_{Mo}^{bcc,0} & = - 73232.2 - 271.5 *T \\ L_{Fe:Mo:Fe,Ni}^{0} & = 410080 + 191.0 *T \\ L_{Fe:Mo:Cr,Ni}^{0} & = - 73519.7 - 425.3 *T. \\ \end{aligned} $$

Laves: (Cr,Fe,Ni)2(Cr,Fe,Mo,Ni)

$$ \begin{aligned} L_{Fe:Cr,Mo,Ni}^{0} & = 0 \\ L_{Fe:Cr,Mo,Ni}^{1} & = - 186830 \\ L_{Fe:Cr,Mo,Ni}^{2} & = 0 \\ L_{Cr,Fe:Mo,Ni}^{0} & = - 115829. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Tan, L. & Busby, J.T. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys. Metall Mater Trans A 46, 3900–3908 (2015). https://doi.org/10.1007/s11661-015-2997-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2997-y

Keywords

Navigation