Skip to main content
Log in

Micromechanical Modeling the Plastic Deformation of Particle-Reinforced Bulk Metallic Glass Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A micromechanics model was employed to investigate the mechanical performance of particle-reinforced bulk metallic glass (BMG) composites. The roles of shear banding in the tensile deformation are accounted for in characterizing the strength and ductility of ductile particle-filled BMGs. For the sake of simplicity and convenience, shear band was considered to be a micro-crack in the present model. The strain-based Weibull probability distribution function and percolation theory were applied to describe the equivalent micro-crack evolution, which results in the progressive failure of BMG composites. Based on the developed model, the influences of shear bands on the plastic deformation were discussed for various microstructures. The predictions were in fairly good agreement with the experimental data from the literatures, which confirms that the developed analytical model is able to successfully describe the mechanical properties, such as yield strength, strain hardening, and stress softening elongation of composites. The present results will shed some light on optimizing the microstructures in effectively improving the tensile ductility of BMG composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.H. Wang: Prog. Mater. Sci., 2012, vol. 57, pp. 487–656.

    Article  Google Scholar 

  2. M. Ferry, K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu, and O. Biletska: MRS. Commun., 2013, vol. 3, pp. 1–12.

    Article  Google Scholar 

  3. G. He, J. Eckert, W. Löser, and L. Schultz: Nat. Mater., 2003, vol. 2, pp. 33–37.

    Article  Google Scholar 

  4. A.L. Greer, Y.Q. Cheng, and E. Ma: Mater. Sci. Eng. R., 2013, vol. 74, pp. 71–132.

    Article  Google Scholar 

  5. A. Inoue, F.L. Kong, S.L. Zhu, E. Shalaan, and F.M. Al-Marzouki: Intermetallics, 2015, vol. 58, pp. 20–30.

    Article  Google Scholar 

  6. J.C. Lee, Y.C. Kim, J.P. Ahn, and H.S. Kim: Acta. Mater., 53(2005): 129–139.

    Article  Google Scholar 

  7. M. Kusy, U. Kühn, A. Concustell, A. Gebert, J. Das, J. Eckert, and L. Schultz: Intermetallics, 2006, vol. 14, pp. 982–986.

    Article  Google Scholar 

  8. C.W. Jeon, C.P. Kim, H.S. Kim, and S.H. Lee: Metall. Mater. Trans. A., 2015, vol. 46, pp. 1588–1596.

    Article  Google Scholar 

  9. J.H. Gao, J. Sharp, D. Guan, W. M. Rainforth, and I. Todd: Acta. Mater., 2015, vol. 86, pp. 208–215.

    Article  Google Scholar 

  10. G. Chen, J.L. Cheng, and C.T. Liu: Intermetallics, 2012, vol. 28, pp. 25–33.

    Article  Google Scholar 

  11. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue: Scripta Mater., 2010, vol. 62, pp. 278–281.

    Article  Google Scholar 

  12. M.L. Lee, Y. Li, and C.A. Schuh: Acta Mater., 2004, vol. 52, pp. 4121–4131.

    Article  Google Scholar 

  13. S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert: Acta Mater., 2009, vol. 57, pp. 5445–5453.

    Article  Google Scholar 

  14. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085–1089.

    Article  Google Scholar 

  15. Z.Q. Liu, G. Liu, R.T. Qu, Z.F. Zhang, S.J. Wu, and T. Zhang: Sci. Rep., 2014, vol. 4, DOI:10.1038/srep04167.

  16. S.H. Hong, J.T. Kim, M.W. Lee, J.M. Park, M.H. Lee, B.S. Kim, J.Y. Park, Y.H. Seo, J.Y. Suh, P. Yu, M. Qian, and K.B. Kim: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2376–2381.

    Article  Google Scholar 

  17. F.F. Wu, K.C. Chan, S.T. Li, and G. Wang: J. Mater. Sci., 2014, vol. 49, pp. 2164–2170.

    Article  Google Scholar 

  18. J. Liu, and V.P.W. Shim: Int. J. Impact Eng., 2015, vol. 80, pp. 94–106.

    Article  Google Scholar 

  19. H.F. Zhou, S.X. Qu, and W. Yang: Int. J. Plasticity, 2013, vol. 44, pp. 147–160.

    Article  Google Scholar 

  20. Y.F. Shi, and M.L. Falk: Acta Mater., 2008, vol. 56, pp. 995–1000.

    Article  Google Scholar 

  21. K. Albe, Y. Ritter, and D. Sopu: Mech. Mater., 2013, vol. 67, pp. 94–103.

    Article  Google Scholar 

  22. F. Abdeljawad, and M. Haataja: Phys. Rev. Lett., 2010, vol. 105, pp. 125503.

    Article  Google Scholar 

  23. H.Y. Zhang, and G.P. Zheng: J. Alloys Comp., 2014, vol. 586, pp. S262–S266.

    Article  Google Scholar 

  24. R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel: Acta Mater., 2005, vol. 53, pp. 1883–1893.

    Article  Google Scholar 

  25. S.B. Biner: Acta Mater., 2006, vol. 54, pp. 139–150.

    Article  Google Scholar 

  26. T.J. Hardin, and E.R. Homer: Acta Mater., 2015, vol. 83, pp. 203–215.

    Article  Google Scholar 

  27. R.T. Ott, F. Sansoz, T. Jiao, D. Waraner, C. Fan, J.F. Molinari, K.T. Ramesh, and T.C. Hufnagel: Metall. Mater. Trans. A., 2006, vol. 37, pp. 3251–3258.

    Article  Google Scholar 

  28. Y. Leng, and T.H. Courtney: J. Mater. Sci., 1991, vol. 26, pp. 588–592.

    Article  Google Scholar 

  29. H.L. Jia, L.L. Zheng, W.D. Li, N. Li, J.W. Qiao, G.Y. Wang, Y. Ren, P.K. Liaw, and Y.F. Gao: Metall. Mater. Trans. A., 2015, vol. 46, pp. 2431–2442.

    Article  Google Scholar 

  30. K. Marandi, and V.P.W. Shim: Continuum. Mech. Thermodyn., 2014, vol. 26, pp. 321–341.

    Article  Google Scholar 

  31. K. Marandi, P. Thamburaja, and V.P.W. Shim: Mech. Mater., 2014, vol. 75, pp. 151–164.

    Article  Google Scholar 

  32. Q. Yang, A. Mota, and M. Ortiz: Comput. Mech., 2006, vol. 37, pp. 194–204.

    Article  Google Scholar 

  33. J.W. Qiao, T. Zhang, F.Q. Yang, P.K. Liaw, S. Pauly, and B.S. Xu: Sci. Rep., 2013, vol. 3, DOI:10.1038/srep02816.

  34. G.J. Weng: J. Mech. Phys. Solid, 1990, vol. 38, pp. 419–441.

    Article  Google Scholar 

  35. L.L. Zhu, and J. Lu: Int. J. Plasticity, 2012, vol. 30, pp. 166–184.

    Article  Google Scholar 

  36. Y. Zhang, and A.L. Greer: Appl. Phys. Lett., 2006, vol. 89, pp. 071907.

    Article  Google Scholar 

  37. R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: J. Appl. Phys., 2003, vol. 94, pp. 904–911.

    Article  Google Scholar 

  38. H. Yamamoto: Int. J. Fracture, 1978, vol. 14, pp. 347–365.

    Article  Google Scholar 

  39. M. Kachanov: Adv. Appl. Mech., 1994, vol. 30, pp. 259–445.

    Google Scholar 

  40. G.Y. Sun, G. Chen, and G.L. Chen: Intermetallics, 2007, vol. 15, pp. 632–634.

    Article  Google Scholar 

  41. W.F. Wu, Y. Li, and C.A. Schuh: Phil. Mag., 2008, vol. 88, pp. 71–89.

    Article  Google Scholar 

  42. J.W. Qiao, A.C. Sun, E.W. Huang, Y. Zhang, P.K. Liaw, and C.P. Chuang: Acta Mater., 2011, vol. 59, pp. 4126–4137.

    Article  Google Scholar 

  43. R.L. Narayan, P.S. Singh, D.C. Hofmann, N. Hutchinson, K.M. Flores, and U. Ramamurty: Acta Mater., 2012, vol. 60, pp. 5089–5100.

    Article  Google Scholar 

  44. T. Zhang, H.Y. Ye, J.Y. Shi, H.J. Yang, and J.W. Qiao: J. Alloy Compd., 2014, vol. 583, pp. 593–597.

    Article  Google Scholar 

  45. J.S.C. Jang, J.B. Li, S.L. Lee, Y.S. Chang, S.R. Jian, J.C. Huang, and T.G. Nieh: Intermetallics, 2012, vol. 30, pp. 25–29.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. B11020079), Jiangsu Provincial Natural Science Foundation (No. BK2012407), National Natural Science Foundation of China (11202064) and Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Jiang.

Additional information

Manuscript submitted December 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Shi, X. & Qiu, K. Micromechanical Modeling the Plastic Deformation of Particle-Reinforced Bulk Metallic Glass Composites. Metall Mater Trans A 46, 3705–3712 (2015). https://doi.org/10.1007/s11661-015-2977-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2977-2

Keywords

Navigation