Skip to main content
Log in

The Apparent Contact Angle and Wetted Area of Active Alloys on Silicon Carbide as a Function of the Temperature and the Surface Roughness: A Multivariate Approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Despite the broad field of applications for active filler alloys for brazing ceramics, as well as intense research work on the wetting and spreading behavior of these alloys on ceramic surfaces within the last decades, the manufactured joints still exhibit significant variations in their properties due to the high sensitivity of the alloys to changing brazing conditions. This increases the need for investigations of the wetting and spreading behavior of filler alloys with regard to the dominating influences combined with their interdependencies, instead of solely focusing on single parameter investigations. In this regard, measurements of the wetting angle and area were conducted at solidified AgCuTi and CuSnTi alloys on SiC substrates. Based on these measurements, a regression model was generated, illustrating the influence of the brazing temperature, the roughness of the faying surfaces, the furnace atmosphere, and their interdependencies on the wetting and spreading behavior of the filler alloys. It was revealed that the behavior of the melts was significantly influenced by the varied brazing parameters, as well as by their interdependencies. This result was also predicted by the developed model and showed a high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.G. Nicholas, S.D. Peteves, Scripta Metall. Mater., 1994, vol. 31, pp. 1091-96.

    Article  Google Scholar 

  2. W. Tillmann: PhD Thesis, RWTH-Aachen, 1992.

  3. B. Drevet, S. Kalogeropoulou, N. Eustathopoulos, Acta Metall. Mater., 1993, vol. 41, pp. 3119-26.

    Article  Google Scholar 

  4. A.G. Pincus, S. Chang, Am. Ceram. Soc. Bull., 1977, vol. 56, pp. 433-36.

    Google Scholar 

  5. A.P. Tomsia, J.A. Pask, R.E. Loehman, S.M. Johnson, Ceram. Eng. Sci. Process., 1989, vol. 10, pp. 1631-54.

    Google Scholar 

  6. X.B. Zhou, J.Th.M. de Hosson, Acta Mater., 1995, vol. 44, pp. 421-26.

    Article  Google Scholar 

  7. J.C. Ambrose, M.G. Nicholas, A.M. Stoneham, Acta Metall. Mater., 1992, vol. 40, pp. 2483-88.

    Article  Google Scholar 

  8. L. Ljungberg: PhD Thesis, Chalmers University of Technology in Gotheburg, 1992.

  9. V.S. Zhuravlev, A.A. Prokopenko, B.D. Kostyuk, I.I. Gab, and Y.V. Naidich: Proceedings of the International Conference on High Temperature Capillarity, 1998, pp. 299–305.

  10. K. Landry, C. Rado, R. Voitovich, N. EustathopoulosActa Mater., 1997, vol. 45(7), pp. 3079-85.

    Article  Google Scholar 

  11. P. Xiao, B. Derby, Acta Mater., 1998, vol. 46(10), pp. 3491-99.

    Article  Google Scholar 

  12. Y.V. Naidich, V.S. Zhuravlev, N. Krasovskaya, Mater. Sci. Eng. A 1998,vol. A245, pp. 293-99.

    Article  Google Scholar 

  13. J. Drelich, J.D. Miller, J. Colloid Interface Sci., 1993, vol. 164, pp. 252-59.

    Article  Google Scholar 

  14. C. Rado, S. Kalogeropoulou, N. Eustathopoulos, Scripta Mater., 1999, vol. 42(2), pp. 203-08.

    Article  Google Scholar 

  15. KH. Xiong, X. Li, W. Mao, Y. Cheng, Mater. Lett., 1997, vol. 57, pp. 3417-21.

    Article  Google Scholar 

  16. D. Ashoff: PhD Thesis, TU Dortmund, 1994.

  17. W. Tillmann, J. Pfeiffer, N. Sievers, R. Zielke, L. Wojarski, Keram. Z., 2011, vol. 3, pp. 180-85.

    Google Scholar 

  18. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, 3rd ed., Pergamon Materials Series, New York, 1999.

  19. R. Asthana, N. Sobczak (2000) JOM-e 52, 1–19.

    Article  Google Scholar 

  20. P.G. de Gennes, Rev. Mod. Phys., 1985, vol. 57, pp. 827-63.

    Article  Google Scholar 

  21. W.D. Kaplan, D. Chatain, P. Wynblatt, W.C. Carter, J. Mater. Sci., 2013, vol. 48, pp. 5681-5717.

    Article  Google Scholar 

  22. T. Young, Trans. R. Soc., 1805, vol. 95, pp. 65-87.

    Article  Google Scholar 

  23. N. Sobczak, M. Singh, R. Asthana, Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 241-53.

    Article  Google Scholar 

  24. P.G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena, 1st ed., Springer, New York, 2004.

    Book  Google Scholar 

  25. G. Kumar, K.N. Prabhu, Adv. Colloid Interface Sci., 2007, vol. 133, pp. 61-89.

    Article  Google Scholar 

  26. P.R. Chidambaram, A. Meier, G.R. Edwards, Mater. Sci. Eng., 1995, vol. A206, pp. 249-64.

    Google Scholar 

  27. N. Eustathopoulos, N. Sobczak, A. Passerone, K. Nogi, Mater. Sci. Eng., 2005, vol. 40, pp. 2271-80.

    Google Scholar 

  28. S. Kalogeropoulou, C. Rado, N. Eustathopoulos, Scripta Mater., 1999, vol. 41, pp. 723-28.

    Article  Google Scholar 

  29. L. Espie, B. Drevet, N. Eustathopoulos, Metall. Mater. Trans. A, 1994, vol. 25, pp. 599-605.

    Article  Google Scholar 

  30. R.N. Wenzel, Ind. Eng. Chem., 1936, vol. 28, pp. 988-94.

    Article  Google Scholar 

  31. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc., 1944, vol. 40, pp. 546-51.

    Article  Google Scholar 

  32. F.G. Yost, J.R. Michael, E.T. Eisenmann, Acta Metall. Mater., 1995, vol. 43, pp. 299-305.

    Article  Google Scholar 

  33. S.J. Hitchcock, N.T. Caroll, M.G. Nicholas, J. Mater. Sci., 1981, vol. 16, pp. 714-32.

    Article  Google Scholar 

  34. W. Tillmann, J. Pfeiffer, L. Wojarski, and S. Yurchenko: Proceedings of the International Conference Brazing, High Temperature Brazing and Diffusion Welding, 2013, vol. 10, pp. 151–56.

  35. W. Tillmann, J. Pfeiffer, L. Wojarski, M. Bruns, and H.G. Rademacher, Oberflächenbehandlung zum Fügen von keramischen Werkstoffen, Technische Keramische Werkstoffe, Chap. 3.9.2.1, HVB, Ellerau, 2013.

Download references

Acknowledgments

This research was supported by the German Research Foundation (DFG Grant No.: TI-343/52-1, “In-Situ” Untersuchungen des Einflusses der Oberflächengüte und Interface-Reaktionen auf das Benetzungsverhalten verschiedener Lotsysteme auf Siliziumkarbid am GK-REM), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pfeiffer.

Additional information

Manuscript submitted October 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillmann, W., Pfeiffer, J. & Wojarski, L. The Apparent Contact Angle and Wetted Area of Active Alloys on Silicon Carbide as a Function of the Temperature and the Surface Roughness: A Multivariate Approach. Metall Mater Trans A 46, 3592–3600 (2015). https://doi.org/10.1007/s11661-015-2938-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2938-9

Keywords

Navigation