Skip to main content
Log in

Evaluation of the Deformation Behavior of a Semi-solid Hypereutectic Al-Si Alloy Compressed in a Drop-Forge Viscometer

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The rheological behavior of an Al-25 mass pct Si alloy, i.e., a hypereutectic Al-Si alloy, was investigated to determine its processability under semi-solid forming conditions. To measure the viscosity of the semi-solid alloy, a parallel-plate drop-forge viscometer similar to that devised by Yurko and Flemings was developed. Drop-forge experiments revealed that the viscosity initially decreased as the shear rate increased and subsequently increased as the shear rate decreased. Thus, the viscosity reached a minimum at approximately the maximum shear rate. The summarized relationship between the viscosity, μ [Pa s], and the shear rate, \( \dot{\gamma } \) [s−1], can be described by the power-law model μ = 1.78 × 107 \( \dot{\gamma } \) −1.5. The decrease in viscosity as a function of the shear rate derived from this equation depends on both the temperature and the applied force but not the duration of deformation. A convex curve was obtained when the effective duration of deformation, i.e., the actual compression time, was plotted as a function of the viscosity and the effective duration of deformation reached a maximum at approximately μ = 30 kPa s (\( \dot{\gamma } \) = 70 s−1). The origin of this profile can be attributed to a combination of both a moderate working time and an adequate deformation, which resulted from a decrease in the deformation resistance accompanied by a lowering of the viscosity. The viscosity at the maximum effective duration of deformation thus corresponds to the transition point for the change in the flow process dominant factor from plastic forming (forging) to casting. Therefore, the viscosity μ = 30 kPa s is believed to be the optimum viscosity for the semi-solid forming of the Al-25 mass pct Si alloy. The approximate temperature condition can be ranged from 855 K to 859 K (582 °C to 586 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.C. Flemings, R.G. Rieks, and K.P. Young: Mater. Sci. Eng., 1976, vol. 25, pp. 103-17.

    Article  Google Scholar 

  2. V. Laxmanan and M.C. Flemings: Mettal. Trans. A, 1980, vol. 11A, pp. 1927-37.

    Article  Google Scholar 

  3. P.J. Ward, H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, and J-M. Rodrigues-Ibabe: Acta Mater., 1996, vol. 44, pp. 1717-27.

    Article  Google Scholar 

  4. H. Iwasaki, T. Mori, M. Mabuchi, and K. Higashi: Acta Mater., 1998, vol. 46, pp. 6351-60.

    Article  Google Scholar 

  5. J.A. Yurko and M.C. Flemings: Mettal. Mater. Trans. A, 2002, vol. 33A, pp. 2737-46.

    Article  Google Scholar 

  6. K. Solek, Z. Mitura, R. Kuzaik, and P. Kapranos: Solid State Phenom., 2006, vols. 116-117, pp.626-29.

    Article  Google Scholar 

  7. O.Lashkari and R.Ghomashchi: J. Mater. Proc. Technol., 2007, vol. 182, pp. 229-40.

    Article  Google Scholar 

  8. D.H. Kirkwood, M. Suéry, P. Kapranos, H.V. Atkinson, and K.P. Young: Semi-solid Processing of Alloys, Springer Berlin Heidelberg, Germany, 2010.

    Google Scholar 

  9. E.J. Zoqui and M.A. Naldi: J. Mater. Sci., 2011, vol.46, pp. 7558-66.

    Article  Google Scholar 

  10. H.M. Guo, L.J. Wang, Q. Wang, and X.J. Yang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1490-95.

    Article  Google Scholar 

  11. Y. Fukui, H. Okada, N. Kumazawa, and Y. Watanabe: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2627-36.

    Article  Google Scholar 

  12. K. Yamagiwa, Y. Watanabe, K. Matsuda, Y. Fukui, and P. Kapranos: Mater. Sci. Eng. A, 2006, vol. 416, pp. 80-91.

    Article  Google Scholar 

  13. M.C. Flemings: Metall. Trans. A, 1991, vol. 22A, pp. 957-81.

    Article  Google Scholar 

  14. D.H. Kirkwood: Int. Mater. Rev., 1994, vol. 39, pp. 173-89.

    Article  Google Scholar 

  15. T. Chucheep, J. Wannasin, R. Canyook, T. Rattanochaikul, S. Janudom, S. Wisutmethangoon, and M.C. Flemings: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4754-63.

    Article  Google Scholar 

  16. G.J. Dienes and H.F. Klemm: J. Appl. Phys., 1946, vol. 17, pp. 458-71.

    Article  Google Scholar 

  17. B.K. Prasad, K. Venkateswarlu, O.P. Modi, A.K. Jha, S. Das, R. Dasgupta, and A.H. Yegneswaran: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2747-52.

    Article  Google Scholar 

  18. A. Hekmat-Ardakan and F. Ajersch: Acta Mater., 2010, vol. 58, pp. 3422-28.

    Article  Google Scholar 

  19. M. Sha, S. Wu, X. Wang, L. Wan, and P. An: Mater. Sci. Eng. A, 2012, vol. 535, pp. 258–63.

    Article  Google Scholar 

  20. ASM International Handbook Committee: ASM Handbook, 9th ed., ASM International, Metals Park, OH, 1988, vol. 15, pp. 327–38.

  21. J-J.A. Cheng, D. Apelian, and R.D. Doherty: Metall. Trans. A, 1986, vol. 17A, pp. 2049-62.

    Article  Google Scholar 

  22. Y. Birol: J. Mater Sci., 2008, vol. 43, pp. 3577-81.

    Article  Google Scholar 

  23. D.S.B. Heidary and F. Akhlaghi: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3435-42.

    Article  Google Scholar 

  24. R. Wang and W. Lu: JOM, 2012, vol. 64, No. 2, pp. 330-36.

    Article  Google Scholar 

  25. F.F. Wu, S.T. Li, G.A. Zhang, and F. Jiang: Bull. Mater. Sci., 2014, vol. 37, No. 5, pp. 1153-57.

    Article  Google Scholar 

  26. A.Mazahery and M.O. Shabani: JOM, 2014, vol. 66, No. 5, pp. 726-38.

    Article  Google Scholar 

  27. T.B. Massalski, ed.: Binary Alloy Phase Diagrams, 2nd ed., Plus Updates on CD-ROM Version 1.0, ASM International, 1996.

Download references

Acknowledgments

This research work has been partially support by The Light Metal Educational Foundation Incorporated. We would also like to thank Dr Masayuki Toya, a professor emeritus at Kagoshima University, for many discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyoshi Fukui.

Additional information

Manuscript submitted September 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, Y., Nara, D. & Kumazawa, N. Evaluation of the Deformation Behavior of a Semi-solid Hypereutectic Al-Si Alloy Compressed in a Drop-Forge Viscometer. Metall Mater Trans A 46, 1908–1916 (2015). https://doi.org/10.1007/s11661-015-2777-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2777-8

Keywords

Navigation