Skip to main content
Log in

Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.A. Venables, Philos Mag, 7 (1962) 35.

    Article  Google Scholar 

  2. G.B. Olson, M. Cohen, Metall Trans, A 6 (1975) 791-795.

    Article  Google Scholar 

  3. E.C. Oliver, P.J. Withers, M.R. Daymond, S. Ueta, T. Mori, Appl Phys A-Mater, 74 (2002) S1143-S1145.

    Article  Google Scholar 

  4. J.R. Patel, M. Cohen, Acta Metall, 1 (1953) 531-538.

    Article  Google Scholar 

  5. B.R. Banerjee, J.M. Capenos, and J.J. Hauser: in Application of Fracture Toughness Parameters to Structural Metals, Gordon and Breach, 1966.

  6. K.X. Tao, D.W. Brown, S.C. Vogel, H. Choo, Metall Mater Trans A, 37A (2006) 3469-3475.

    Article  Google Scholar 

  7. T. Angel, J Iron Steel I, 177 (1954) 165.

    Google Scholar 

  8. S.S. Hecker, M.G. Stout, K.P. Staudhammer, J.L. Smith, Metall Trans A, 13 (1982) 619-626.

    Article  Google Scholar 

  9. E. Cakmak, S.C. Vogel, H. Choo, Mater Sci Eng A-Struct, 589 (2014) 235-241.

    Article  Google Scholar 

  10. B. Petit, N. Gey, M. Cherkaoui, B. Bolle, M. Humbert, Int J Plasticity, 23 (2007) 323-341.

    Article  Google Scholar 

  11. C. Garion, B. Skoczen, S. Sgobba, Int J Plasticity, 22 (2006) 1234-1264.

    Article  Google Scholar 

  12. J.A. Lichtenfeld, M.C. Mataya, C.J. Van Tyne, Metall Mater Trans A, 37A (2006) 147-161.

    Article  Google Scholar 

  13. G.L. Huang, D.K. Matlock, G. Krauss, Metall Trans A, 20 (1989) 1239-1246.

    Article  Google Scholar 

  14. S. Cheng, Y.D. Wang, H. Choo, X.L. Wang, J.D. Almer, P.K. Liaw, Y.K. Lee, Acta Mater, 58 (2010) 2419-2429.

    Article  Google Scholar 

  15. K.X. Tao, H. Choo, H.Q. Li, B. Clausen, J.E. Jin, Y.K. Lee, Appl. Phys. Lett., 2007, vol. 90, 101911.

    Article  Google Scholar 

  16. K. Asoo, Y. Tomota, S. Harjo, Y. Okitsu, ISIJ Int, 51 (2011) 145-150.

    Article  Google Scholar 

  17. T. Iwamoto, T. Tsuta, Int J Plasticity, 16 (2000) 791-804.

    Article  Google Scholar 

  18. K.X. Tao, J.J. Wall, H.Q. Li, D.W. Brown, S.C. Vogel, H. Choo, J Appl Phys, 100:123515 (2006).

    Article  Google Scholar 

  19. R. Blonde, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Bruck, S. van der Zwaag, N.H. van Dijk, Acta Mater, 60 (2012) 565-577.

    Article  Google Scholar 

  20. S. Cheng, X.L. Wang, Z.L. Feng, B. Clausen, H. Choo, P.K. Liaw, Metall Mater Trans A, 39A (2008) 3105-3112.

    Article  Google Scholar 

  21. N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, Y.D. Wang, Acta Mater, 57 (2009) 3965-3977.

    Article  Google Scholar 

  22. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii, Acta Mater, 52 (2004) 5737-5745.

    Article  Google Scholar 

  23. S.A. Kulin, M. Cohen, B.L. Averbach, JOM-J Met, 4 (1952) 661-668.

    Google Scholar 

  24. L.E. Murr, K.P. Staudhammer, S.S. Hecker, Metall Trans A, 13 (1982) 627-635.

    Article  Google Scholar 

  25. R.K. Ray, J.J. Jonas, M.P. Butronguillen, J. Savoie, ISIJ Int, 34 (1994) 927-942.

    Article  Google Scholar 

  26. R.K. Ray, J.J. Jonas, Int Mater Rev, 35 (1990) 1-36.

    Article  Google Scholar 

  27. E. Cakmak, H. Choo, K. An, Y. Ren, Acta Mater, 60 (2012) 6703-6713.

    Article  Google Scholar 

  28. E.S. Perdahcioglu, H.J.M. Geijselaers, J. Huetink, Mater Sci Eng A-Struct, 481 (2008) 727-731.

    Article  Google Scholar 

  29. G.R. Canova, U.F. Kocks, J.J. Jonas, Acta Metall, 32 (1984) 211-226.

    Article  Google Scholar 

  30. F. Montheillet, M. Cohen, J.J. Jonas, Acta Metall, 32 (1984) 2077-2089.

    Article  Google Scholar 

  31. F. Montheillet, P. Gilormini, J.J. Jonas, Acta Metall, 33 (1985) 705-717.

    Article  Google Scholar 

  32. J. Baczynski, J.J. Jonas, Acta Mater, 44 (1996) 4273-4288.

    Article  Google Scholar 

  33. L.S. Toth, J.J. Jonas, P. Gilormini, B. Bacroix, Int J Plasticity, 6 (1990) 83-108.

    Article  Google Scholar 

  34. M.P. Miller, D.L. McDowell, J Eng Mater-T ASME, 118 (1996) 28-36.

    Article  Google Scholar 

  35. A.A. Lebedev, V.V. Kosarchuk, Int J Plasticity, 16 (2000) 749-767.

    Article  Google Scholar 

  36. R. Woracek, D. Penumadu, N. Kardjilov, A. Hilger, M. Boin, J. Banhart, I. Manke, Adv Mater, 26 (2014) 4069-4073.

    Article  Google Scholar 

  37. G.E. Dieter (1983) Mechanical Metallurgy, SI Metric ed., New York: McGraw Hill.

    Google Scholar 

  38. P. Chapellier, R.K. Ray, J.J. Jonas, Acta Metall Mater, 38 (1990) 1475-1490.

    Article  Google Scholar 

  39. M. Doner, H. Chang, H. Conrad, J Mech Phys Solids, 22 (1974) 555-573.

    Article  Google Scholar 

  40. L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, J.W. Richardson, J Appl Phys, 81 (1997) 594-600.

    Article  Google Scholar 

  41. F. Bachmann, R. Hielscher, H. Schaeben, Sol St Phen, 160 (2010) 63-68.

    Article  Google Scholar 

  42. P. Hedstrom, U. Lienert, J. Almer, M. Oden, Scripta Mater, 56 (2007) 213-216.

    Article  Google Scholar 

  43. E. Cakmak, H. Choo, K. An, Y. Ren, Mater Lett, 65 (2011) 3013-3015.

    Article  Google Scholar 

  44. L.S. Toth, P. Gilormini, J.J. Jonas, Acta Metall, 36 (1988) 3077-3091.

    Article  Google Scholar 

  45. K. Sekine, P. Van Houtte, J. Gil Sevillano, and E. Aernoudt: 6th Proceedings of the International Conference Textures Materials, 1981, pp. 396–407.

  46. P. Van Houtte, E. Aernoudt, and K. Sekine: 6th Proceedings of the International Conference Textures Materials, 1981, vol. 1, pp. 337–46.

  47. R.A. Lebensohn, C.N. Tome, Acta Metall Mater, 41 (1993) 2611-2624.

    Article  Google Scholar 

  48. L.S. Toth, K.W. Neale, J.J. Jonas, Acta Metall, 37 (1989) 2197-2210.

    Article  Google Scholar 

  49. J.J. Jonas, L.S. Toth, Scripta Metall Mater, 27 (1992) 1575-1580.

    Article  Google Scholar 

  50. Q. Xue, J.F. Bingert, B.L. Henrie, G.T. Gray, Mater Sci Eng A-Struct, 473 (2008) 279-289.

    Article  Google Scholar 

  51. F.J. Humphreys, J Mater Sci, 36 (2001) 3833-3854.

    Article  Google Scholar 

  52. J.J. Jonas, Int J Mech Sci, 35 (1993) 1065-1077.

    Article  Google Scholar 

  53. A. Das, S. Tarafder, Int J Plasticity, 25 (2009) 2222-2247.

    Article  Google Scholar 

  54. T. Ungar, L.S. Toth, J. Illy, I. Kovacs, Acta Metall, 34 (1986) 1257-1267.

    Article  Google Scholar 

  55. L.S. Toth, J. Lendvai, I. Kovacs, B. Albert, J Mater Sci, 20 (1985) 3983-3987.

    Article  Google Scholar 

  56. K. Spencer, J.D. Embury, K.T. Conlon, M. Veron, Y. Brechet, Mater Sci Eng A-Struct, 387-89 (2004) 873-881.

    Article  Google Scholar 

  57. H. Fujita, S. Ueda, Acta Metall, 20 (1972) 759.

    Article  Google Scholar 

  58. J. Weertman, S.S. Hecker, Mech of Mater, 2 (1983) 89-101.

    Article  Google Scholar 

  59. A. Shibata, H. Yonezawa, K. Yabuuchi, S. Morito, T. Furuhara, T. Maki, Mater Sci Eng A-Struct, 438 (2006) 241-245.

    Article  Google Scholar 

  60. C.L. Magee, R.G. Davies, Acta Metall, 20 (1972) 1031.

    Article  Google Scholar 

  61. A.J. McEvily, R.C. Ku, T.L. Johnston, T Metall Soc AIME, 236 (1966) 108.

    Google Scholar 

  62. E.C. Bain, T Am I Min Met Eng, 70 (1924) 25-46.

    Google Scholar 

  63. F. Marketz, F.D. Fischer, Comp Mater Sci, 3 (1994) 307-325.

    Article  Google Scholar 

  64. T. Iwamoto, T. Tsuta, Y. Tomita, Int J Mech Sci, 40 (1998) 173.

    Article  Google Scholar 

  65. V. Talyan, R.H. Wagoner, J.K. Lee, Metall Mater Trans A, 29 (1998) 2161-2172.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the NSF Major Research Instrumentation (MRI) program under contract DMR.0421219. Use of the APS was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. The sample preparation at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. E.C. and H.C. acknowledge K. An and H. Skorpenske (Oak Ridge National Laboratory) for their help using the VULCAN load frame and D. Fielden (University of Tennessee) for machining the specimens. E.C. is grateful for Y. Wang’s help performing the VPSC modeling and for the 2012 and 2013 Ludo Frevel Crystallography Scholarship Awards from the International Center for Diffraction Data (ICDD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hahn Choo.

Additional information

Manuscript submitted August 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cakmak, E., Choo, H., Kang, JY. et al. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies. Metall Mater Trans A 46, 1860–1877 (2015). https://doi.org/10.1007/s11661-015-2772-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2772-0

Keywords

Navigation