Skip to main content

Advertisement

Log in

Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fracture properties of Ti-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 μm, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPa√m within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Chen, Y. Wang, J. Qiang, and V. Dong: Acta Mater., 2003, vol. 51, pp. 1899-1907.

    Article  Google Scholar 

  2. H. A. Shivaee, A. Castellero, P. Rizzi, P. Tiberto, H.R.M. Hosseini, and M. Baricco: Met. Mater. Int., 2013, vol. 19, pp. 643-49.

    Article  Google Scholar 

  3. Y.C. Kim, J.M. Park, J.K. Lee, F.H. Bae, W.T. Kim, and D.H. Kim: Mater. Sci. Eng., 2004, vol. A375-377, pp. 749-53.

    Article  Google Scholar 

  4. R. Busch, A. Masuhr, and W.L. Johnson: Mater. Sci. Eng., 2001, vol. A304-306, pp. 97-102.

    Article  Google Scholar 

  5. J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, and D.H. Kim: Scr. Mater., 2005, vol. 53, pp. 1-6.

    Article  Google Scholar 

  6. M. Taboosi, F. Karimzadeh, M.H. Enayati, S. Lee, and H.S. Kim: Met. Mater. Int., 2013, vol. 19, pp. 901-06.

    Google Scholar 

  7. D.E. Polk and D. Turnbull: Acta Metall., 1972, vol. 20, pp. 493-98.

    Article  Google Scholar 

  8. C.A. Pampillow: Scr. Metall., 1972, vol. 6, pp. 915-17.

    Article  Google Scholar 

  9. T.E. Kim, S.W. Sohn, J.M. Park, C.W. Bang, W.T. Kim, and D.H. Kim: Met. Mater. Int., 2013, vol. 19, pp. 667-71.

    Article  Google Scholar 

  10. C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901-04.

    Article  Google Scholar 

  11. C.C. Hays, W.L. Johnson, and C.P. Kim: Mater. Sci. Eng., 2001, vol. A304-306, pp. 650-55.

    Article  Google Scholar 

  12. D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085-89.

    Article  Google Scholar 

  13. Y.S. Oh, C.P. Kim, S. Lee, and N.J. Kim: Acta Mater., 2011, vol. 59, pp. 7277-86.

    Article  Google Scholar 

  14. D.J. Ha, C.P. Kim, and S. Lee: Mater. Sci. Eng., 2012, vol. A552, pp. 404-09.

    Article  Google Scholar 

  15. D.J. Ha, C.P. Kim, and S. Lee: Mater. Sci. Eng., 2012, vol. A558, pp. 558-65.

    Article  Google Scholar 

  16. D.L. Davison: Metall. Trans., 1987, vol. 18A, pp. 2115-28.

    Article  Google Scholar 

  17. J.G. Lee, D.-G. Lee, S. Lee, and N.J. Kim: Metall. Mater. Trans., 2004, vol. 35A, pp. 3753-61.

    Article  Google Scholar 

  18. S.R. Nutt and L.M. Duva: Scr. Metall., 1986, vol. 20, pp. 1055-58.

    Article  Google Scholar 

  19. M. Tavoosi, M.H. Enayati, and F. Karimzadeh: Met. Mater. Inter., 2011, vol. 17, pp. 853-56.

    Article  Google Scholar 

  20. D.C. Hofmann, J.-Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 20136-40.

    Article  Google Scholar 

  21. C. Jeon, C.P. Kim, S.-H. Joo, H.S. Kim, and S. Lee: Acta Mater., 2013, vol. 61, pp. 3012-26.

    Article  Google Scholar 

  22. M.W. Lee, H.J. Shin, S.H. Hong, J.T. Kim, H. Choi-Yim, Y. Seo, W.H. Lee, P. Yu, M. Qian, J.K. Lee, and K.B. Kim: Met. Mater. Int., 2014, vol 20, pp. 1-5.

    Article  Google Scholar 

  23. J.G. Lee, K.-S. Sohn, S. Lee, N.J. Kim, and C.P. Kim: Mater. Sci. Eng., 2007, vol. A464, pp. 261-68.

    Article  Google Scholar 

  24. C.-Y. Son, C.K. Kim, S.Y. Shin, and S. Lee: Mater. Sci. Eng., 2009, vol. A508, pp. 15-22.

    Article  Google Scholar 

  25. C. Jeon, C.P. Kim, and S. Lee: Metall. Mater. Trans., 2012, vol. 43A, pp. 3675-86.

    Article  Google Scholar 

  26. J.G. Lee, S.S. Park, D.-G. Lee, S. Lee, and N.J. Kim: Intermetallics, 2004, vol. 12, pp. 1125-31.

    Article  Google Scholar 

  27. B. Kim, J. Do, S. Lee, and I. Park: Mater. Sci. Eng., 2010, vol. A527, pp. 6745-57.

    Article  Google Scholar 

  28. D.-G. Lee, S. Lee, and C.S. Lee: Mater. Sci. Eng., 2004, vol. A366, pp. 25-37.

    Article  Google Scholar 

  29. J.W. Qiao, J.T. Zhang, F. Jiang, Y. Zhang, P.K. Liaw, Y. Ren, and G.L. Chen: Mater. Sci. Eng., 2010, vol. A527, pp. 7752-56.

    Article  Google Scholar 

  30. S. Lee, K.-S. Sohn, C.G. Lee, and B.I. Jung: Metall. Mater. Trans., 1997, vol. 28A, pp. 123-34.

    Article  Google Scholar 

  31. J.J. Lewandowski, M. Shazly, and A. Shmimi Nouri: Scr. Mater., 2006, vol. 54, pp. 337-41.

    Article  Google Scholar 

  32. B. Gludovatz, S.E. Naleway, R.O. Ritchie, and J.J. Kruzic: Acta Mater., 2014, vol. 70, pp. 198-207.

    Article  Google Scholar 

  33. D. Broek: Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Boston, 1982, pp. 297-309.

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) Grant (No. 2010-0026981) funded by the Ministry of Education, Science, and Technology, Korea, and by the Brain Korea 21 PLUS Project for Center for Creative Industrial Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted August 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, C., Kim, C.P., Kim, H.S. et al. Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys. Metall Mater Trans A 46, 1588–1596 (2015). https://doi.org/10.1007/s11661-015-2743-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2743-5

Keywords

Navigation