Skip to main content
Log in

Contributions of ε and α′ TRIP Effects to the Strength and Ductility of AISI 304 (X5CrNi18-10) Austenitic Stainless Steel

  • Symposium: CRC799 Contribution
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The deformation-induced processes by tensile loading of X5CrNi18-10 austenitic stainless steel in the temperature range of 77 K to 413 K (−196 °C to 140 °C) were investigated. The results were presented in the form of stress–temperature-transformation (STT) and strain–temperature-transformation (DTT) diagrams. The thermodynamic stability of the austenite with respect to the ε- and α′-martensite transformations was reflected in the STT and DTT diagrams. Furthermore, conclusions could be drawn from the transformation diagrams about the kinetics of stress- and strain-induced martensitic transformations. The diagrams laid foundations for the development of a new method of quantitative determination of strength and elongation contributions by means of induced and often overlapping deformation processes in the austenite. In this context, the plastic strains contributed by the glide and shearing of austenite were quantified and presented in connection with the ε and α′ TRansformation-Induced Plasticity effects. Each deformation process was shown to have made a contribution to the strength and ductility, with a magnitude proportional to its dominance. The summation of such contributions provided the tensile strength and the uniform elongation of the steel. In other words, tensile strength and uniform elongation could be derived from a rule of mixtures. The newly proposed method was capable of explaining the anomalous temperature dependence of uniform elongation in the alloy investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TRIP:

Transformation-induced plasticity

TWIP:

Twinning-induced plasticity

STT:

Stress–temperature-transformation

DTT:

Strain–temperature-Transformation

EBSD:

Electron backscatter diffraction

ΔG γα :

Chemical driving force for the γ → α′ transformation

ΔG γε :

Chemical driving force for the γ → ε transformation

ΔG εα :

Chemical driving force for the ε → α′ transformation

T γε0 :

Temperature at which ΔG γε = 0

T γα0 :

Temperature at which ΔG γα = 0

γ :

Stacking fault energy of austenite

2ρ :

Atomic density in moles per unit area of the {111}γ planes

2σ γ/ε :

Interfacial energy of γ/ε boundaries

W min :

Minimum amount of mechanical work necessary for transformation

M γεs :

Spontaneous γ → ε start temperature

M γεsσ :

Highest temperature for the stress-induced γ → ε transformation

M γεd :

Highest temperature for the strain-induced γ → ε transformation

M γαs :

Spontaneous γ → α′ start temperature

M γαsσ :

Highest temperature for the stress-induced γ → α′ transformation

M γαd :

Highest temperature for the strain-induced γ → α′ transformation

M εαd :

Highest temperature for the strain-induced ε → α′ transformation

σ γαA :

Triggering tensile stress for the γ → α′ transformation

σ γεA :

Triggering tensile stress for the γ → ε transformation

σ εαA :

Triggering tensile stress for the ε → α′ transformation

σ γαS :

Tensile stress at which the strain-induced γ → α′ transformation comes to a standstill

σ γεS :

Tensile stress at which the strain-induced γ → ε transformation comes to a standstill

σ f :

Yield strength of steel

R γm :

True tensile strength of austenite

R αm :

True tensile strength of α′-martensite

R γ+εm :

True tensile strength of steel with austenite and ε-martensite phases

R γ+αm :

True tensile strength of steel with austenite and α′-martensite phases

R γ+ε+αm :

True tensile strength of steel with austenite, ε-, and α′-martensite phases

ε γαA :

Plastic strain at which the γ → α′ transformation is triggered

ε γεA :

Plastic strain at which the γ → ε transformation is triggered

ε εαA :

Plastic strain at which the ε → α′ transformation is triggered

ε γαS :

Plastic strain at which the γ → α′ transformation comes to a standstill

ε γεS :

Plastic strain at which the γ → ε transformation comes to a standstill

ε γ :

Uniform elongation of the austenite

ε γ+α :

Uniform elongation of the steel with austenite and α′-martensite phases

ε γ+ε :

Uniform elongation of the steel with austenite and ε-martensite phases

ε γ+ε+α :

Uniform elongation of the steel with austenite, ε-, and α′-martensite phases

αε′:

α′-Martensite formed via intermediate ε-martensite

αγ′:

α′-Martensite formed directly from austenite

References

  1. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–1904.

    Google Scholar 

  2. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1905–14.

    Google Scholar 

  3. S. Cotes, M. Sade, and A. Fernandez Guillermet: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1957–69.

    Article  Google Scholar 

  4. S.M. Cotes, A. Fernández Guillermet, and M. Sade: Metall. Mater. Trans. A, 2004, vol. 35, pp. 83–91.

    Article  Google Scholar 

  5. H. Gutte and A. Weiß: Habilitation, TU Bergakademie Freiberg, Freiberg, 2011.

  6. A.P. Miodownik: Calphad, 1978, vol. 2, pp. 207–26.

    Article  Google Scholar 

  7. H. Schumann: Arch Eisenhuettenw, 1969, vol. 40, pp. 1027–37.

    Google Scholar 

  8. H.J. Eckstein and A. Weiß: Neue Hütte, 1992, vol. 37, pp. 438–44.

    Google Scholar 

  9. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–22.

    Article  Google Scholar 

  10. J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359–71.

    Article  Google Scholar 

  11. F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 391–400.

    Article  Google Scholar 

  12. G. Blanc, R. Tricot, and R. Castro: Mem Sci Rev Met., 1973, vol. 70, pp. 527–41.

    Google Scholar 

  13. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.

    Article  Google Scholar 

  14. J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.

    Article  Google Scholar 

  15. A. Kovalev, M. Wendler, A. Jahn, A. Weiß, and H. Biermann: Adv. Eng. Mater., 2013, vol. 15, pp. 609–17.

    Article  Google Scholar 

  16. D. Fahr: Metall. Trans., 1971, vol. 2, pp. 1883–92.

    Google Scholar 

  17. N. Tsuchida, Y. Morimoto, T. Tonan, Y. Shibata, K. Fukaura, and R. Ueji: ISIJ Int., 2011, vol. 51, pp. 124–29.

    Article  Google Scholar 

  18. J. Talonen: Helsinki University of Technology, 2007.

  19. W. Bleck: Int. Conf. TRIP-Aided High Strength Ferr. Alloys, Ghent, 2002, pp. 13–24.

  20. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  21. A.S. Hamada, L.P. Karjalainen, R.D.K. Misra, and J. Talonen: Mater. Sci. Eng. A, 2013, vol. 559, pp. 336–44.

    Article  Google Scholar 

  22. A. Weiß, P.R. Scheller, and Gutte: Steel Grips, 2003, vol. 1, pp. 284–88.

  23. A. Weiß, H. Gutte, and P.R. Scheller: Steel Res. Int., 2006, vol. 77, pp. 727–32.

    Google Scholar 

  24. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345–51.

    Article  Google Scholar 

  25. C.G. Rhodes and A.W. Thompson: Metall. Trans. A, 1977, vol. 8, pp. 1901–6.

    Article  Google Scholar 

  26. T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063–71.

    Article  Google Scholar 

  27. M. Okayasu, H. Fukui, H. Ohfuji, and T. Shiraishi: Mater. Sci. Technol., 2013, vol. 30, pp. 301–8.

    Article  Google Scholar 

  28. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  Google Scholar 

  29. S. Martin: TU Bergakademie Freiberg, Freiberg, 2013.

  30. M. Wendler, A. Weiß, L. Krüger, J. Mola, A. Franke, A. Kovalev, and S. Wolf: Adv. Eng. Mater., 2013, vol. 15, pp. 558–65.

    Article  Google Scholar 

  31. N. Tsuchida, T. Kawahata, E. Ishimaru, and A. Takahashi: TetsuHagane, 2013, vol. 99, pp. 517–23.

    Article  Google Scholar 

  32. J.E. Wittig, M. Pozuelo, J.a. Jiménez, and G. Frommeyer: Steel Res. Int., 2009, vol. 80, pp. 66–70.

    Google Scholar 

  33. M. Pozuelo, J. E. Wittig, J. A. Jiménez, and G. Frommeyer: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1826–34.

    Article  Google Scholar 

  34. T.S. Byun, N. Hashimoto, and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889–99.

    Article  Google Scholar 

  35. S.J. Kim, T.H. Lee, and C.S. Oh: Steel Res. Int., 2009, vol. 80, pp. 467–72.

    Google Scholar 

  36. A. Kovalev, A. Jahn, A. Weiß, S. Wolf, and P. R. Scheller: Steel Res. Int., 2012, vol. 83, pp. 576–83.

    Article  Google Scholar 

  37. B.C. De Cooman and J.G. Speer: Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

    Google Scholar 

  38. A. Weidner, A. Müller, A. Weiss, and H. Biermann: Mater. Sci. Eng. A, 2013, vol. 571, pp. 68–76.

    Article  Google Scholar 

  39. J.B. Seol, J.E. Jung, Y.W. Jang, and C.G. Park: Acta Mater., 2013, vol. 61, pp. 558–78.

    Article  Google Scholar 

  40. M. Hauser, J. Mola, and A. Weiß: in HMnS 2014, Aachen, 2014, pp. 117–20.

  41. P.L. Mangonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–86.

    Article  Google Scholar 

  42. X.S. Yang, S. Sun, X.L. Wu, E. Ma, and T.Y. Zhang: Sci. Rep., 2014, vol. 4, p. 6141.

    Article  Google Scholar 

  43. C. Ye, S. Suslov, D. Lin, and G.J. Cheng: Philos. Mag., 2012, vol. 92, pp. 1369–89.

    Article  Google Scholar 

Download references

Acknowledgment

Basic research provisions were made by the German Research Foundation within the framework of the Collaborative Research Center 799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weiß.

Additional information

Manuscript submitted August 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiß, A., Gutte, H. & Mola, J. Contributions of ε and α′ TRIP Effects to the Strength and Ductility of AISI 304 (X5CrNi18-10) Austenitic Stainless Steel. Metall Mater Trans A 47, 112–122 (2016). https://doi.org/10.1007/s11661-014-2726-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2726-y

Keywords

Navigation