Skip to main content
Log in

Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy’s ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure–property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.F. Mondolfo: Aluminium alloys: Structure and properties, 1st ed., Buttterworths, London, 1976, pp. 759-805.

    Book  Google Scholar 

  2. J.G. Kaufman and E.L. Rooy: Aluminum Alloy Castings: Properties, Processes and Applications, ASM International, Materials Park, OH, 2004.

  3. T.O. Mbuya, B.O. Odera and S.P. Ng’ang’a: Int. J. Cast. Met. Res., 2003, vol. 16, pp. 451-64.

    Google Scholar 

  4. S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol. 383, pp. 289-98.

    Article  Google Scholar 

  5. A. Darvishi, A. Maleki, M. Atabaki and M. Zargami: Metall. Mater. Eng., 2010, vol. 16, pp. 11-24.

    Google Scholar 

  6. J.Y. Hwang, H.W. Doty and M.J. Kaufmann: Mater. Sci. Eng. A, 2008, vol. 488, pp. 496-504.

    Article  Google Scholar 

  7. L.A. Narayanan, F.H. Samuel and J.E. Gruzleski: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1761-73.

    Article  Google Scholar 

  8. X. Fang, G. Shao, Y.Q. Liu and Z. Fan: Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 65-72.

    Article  Google Scholar 

  9. J.L. Jorstad: Die Casting Eng., 1986, vol. 30, pp.30-6.

    Google Scholar 

  10. X. Cao and J. Campbell: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1425-35.

    Article  Google Scholar 

  11. H.Y. Kim, T.Y. Park, S.W. Han and H.M. Lee: J. Crystal Growth, 2006, vol. 291, pp. 207-11.

    Article  Google Scholar 

  12. S. Ji, W. Yang, F. Gao, D. Watson and Z. Fan: Mater. Sci. Eng. A, 2013, vol. 564, pp.130-9.

    Article  Google Scholar 

  13. R.N. Lumley, D.R. Gunasegaram, M. Gershenzon, and A.C. Yob: Patent Application WO2009/132388A1.

  14. G. Pucella, A.M. Samuel, F.H. Samuel, H.W. Doty and S. Valtierra: AFS Trans., 1999, vol. 24, pp. 117-25.

    Google Scholar 

  15. J. Gobrecht: Fonderie, 1977, vol. 367, pp. 171-3.

    Google Scholar 

  16. CompuTherm LLC, Pandat Software Package for Calculating Phase Diagrams and Thermodynamic Properties of Multi-component Alloys, Madison, WI, http://www.computherm.com.

  17. W. Kurz and D.J. Fisher: Fundamentals of Solidification, CRC Press, Boca Raton, 1998, ISBN 978-0878498048.

  18. H.I. Laukli: Ph.D. Thesis, NTNU, Trondheim, 2004.

  19. S. Belmares-Perales, M. Castro-Román, M. Herrera-Trejo and L. E. Ramírez-Vidaurri; Metals and Materials International, 2008, vol 14(3), pp. 307-14.

    Article  Google Scholar 

  20. J. Zander, R. Sandström and L. Vitos: Computational Materials Science, 2007, vol 41, pp. 86–95.

    Article  Google Scholar 

  21. O. Vorren, J.E. Evesen and T.B. Pederson: AFS Trans., 1984, vol. 92, pp. 459-66.

    Google Scholar 

  22. S. Seifeddine, S. Johansson and I. Svensson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 385-90.

    Article  Google Scholar 

  23. R. Doglione: JOM, 2012, vol. 64, pp. 51-7.

    Article  Google Scholar 

  24. Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2887-99.

    Article  Google Scholar 

  25. Q.G. Wang, C.H. Caceres and J.R. Griffiths: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2901-12.

    Article  Google Scholar 

  26. C.H. Cáceres and J.A. Taylor: Metall. Mater. Trans. B, 2006, vol. 37, pp. 897-903.

    Article  Google Scholar 

  27. J.A. Taylor: Proc. Mater. Sci., 2012, vol. 1, pp. 19-33.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank AUDI AG and AMAG Austria Metall AG for their financial support of this research project and for permission to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Werner Höppel.

Additional information

Manuscript submitted September 16, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bösch, D., Pogatscher, S., Hummel, M. et al. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility. Metall Mater Trans A 46, 1035–1045 (2015). https://doi.org/10.1007/s11661-014-2700-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2700-8

Keywords

Navigation