Skip to main content
Log in

Hot Deformation of Uranium in the α, β, and γ Phases

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Uniaxial compression tests were carried out on uranium from 0.003 to 5 s−1 and 723 K to 1123 K (450 °C to 850 °C) covering the α, β, and γ phases. The flow stress in the β phase was the highest and that in the γ phase the lowest. The strain rate sensitivity (SRS) was plotted as an iso-SRS contour map. The phase revealed dynamically recrystallized grains at 0.1 s−1 and 873 K (600 °C) with SRS = 0.14. The γ phase showed a high SRS domain of 0.25 at 0.1 to 1 s−1 and 1073 K to 1123 K (800 °C to 850 °C). The activation energy of deformation matched that of self diffusion for α and γ phases, and was higher for the β phase. The stress exponents for all the phases were in the 4.5 to 7 range suggesting dislocation controlled deformation. It was suggested that U should be hot deformed in the α phase in the 873 K to 923 K (600 °C to 650 °C) and 0.1 s−1 range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. If instead of normalized σ/µ, σ is used the activation energy Q comes out to be higher as seen in the present work as well as in literature (250 kJ/mol).[3] However, due to the strong variation of µ with T in α phase, the shear modulus correction appears essential.

References

  1. A.N. Holden: Physical metallurgy of uranium. Addison-Wesley, Reading, MA, 1958.

    Google Scholar 

  2. R. W. Cahn, Acta Metallurgica 1953, vol. 1, pp. 49-70.

    Article  Google Scholar 

  3. S. L. Robinson, O. D. Sherby and P. E. Armstrong, Journal of Nuclear Materials 1973, vol. 46, pp. 293-302.

    Article  Google Scholar 

  4. A. L. W. Collins and D. M. R. Taplin, Journal of Materials Science 1978, vol. 13, pp. 2249-2256.

    Article  Google Scholar 

  5. C. F. St John and E. Teghtsoonian, Journal of Nuclear Materials 1965, vol. 17, pp. 111-115.

    Article  Google Scholar 

  6. R. Vijayaraghavan, Materials Science Forum 1989, vol. 48-49, pp. 329-346.

    Google Scholar 

  7. A. Sunwoo and D. Goto, Scripta Materialia 2002, vol. 47, pp. 261–266.

    Article  Google Scholar 

  8. J. S. Daniel, B. Lesage and P. Lacombe, Acta Metallurgica 1971, vol. 19, pp. 163-173.

    Article  Google Scholar 

  9. M.H. Yoo, Journal of Nuclear Materials 1968, vol. 26, pp. 307-318.

    Article  Google Scholar 

  10. R. J. McCabe, L. Capolungo, P. E. Marshall, C. M. Cady and C. N. Tome, Acta Materialia 2010, vol. 58, pp. 5447-5459.

    Article  Google Scholar 

  11. D. W. Brown, M. A. M. Bourke, B. Clausen, D. R. Korzekwa, R. C. Korzekwa, R. J. McCabe, T. A. Sisneros and D. F. Teter, Materials Science and Engineering: A 2009, vol. 512, pp. 67-75.

    Article  Google Scholar 

  12. R. D. Field, R. J. McCabe, D. J. Alexander and D. F. Teter, Journal of Nuclear Materials 2009, vol. 392, pp. 105-113.

    Article  Google Scholar 

  13. M. Knezevic, L. Capolungo, C. N. Tomé, R. A. Lebensohn, D. J. Alexander, B. Mihaila and R. J. McCabe, Acta Materialia 2010, vol. 60, pp. 702-715.

    Article  Google Scholar 

  14. E. Garlea, R. L. Bridges, V. O. Garlea, D. A. Carpenter, M. A. Hemphill and J. S. Morrell, Materials Science and Engineering: A 2013, vol. 559, pp. 210-216.

    Article  Google Scholar 

  15. Young A. G., Gardiner K. M. and Rotsey W.B., Journal of Nuclear Materials 1960, vol. 2, pp. 234-247.

    Article  Google Scholar 

  16. E. C. Sykes, Journal of Nuclear Materials 1964, vol. 11, pp. 240-242.

    Article  Google Scholar 

  17. R.H. Johnson and E.C. Sykes, Nature 1966, vol. 209, pp. 192-193.

    Article  Google Scholar 

  18. P. E. Armstrong, D. T. Eash and J. E. Hockett, Journal of Nuclear Materials 1972, vol. 45, pp. 211-216.

    Article  Google Scholar 

  19. E.A. Little, Journal of the Australian Institute of Metals 1976, vol. 21, pp. 50-62.

    Google Scholar 

  20. A. N. Holden, Acta Crystallographica 1952, vol. 5, pp. 182-184.

    Article  Google Scholar 

  21. S. N. Chatterjee, Acta Crystallographica 1958, vol. 11, pp. 679-680.

    Article  Google Scholar 

  22. M. L. Kronberg, Journal of Nuclear Materials 1959, vol. 1, pp. 85-95.

    Article  Google Scholar 

  23. A.G. Evans and R.D. Rawlings, Phy. Stat. Sol. 1969, vol. 34, pp. 9-31.

    Article  Google Scholar 

  24. Y. Adda and A. Kirianenko, Journal of Nuclear Materials 1962, vol. 6, pp. 130-134.

    Article  Google Scholar 

  25. Y. Adda, A. Kirianenko and C. Mairy, Journal of Nuclear Materials 1959, vol. 1, pp. 300-301.

    Article  Google Scholar 

  26. Y. Adda and A. Kirianenko, Journal of Nuclear Materials 1959, vol. 1, pp. 120-126.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Atomic Fuels Division, BARC, for supply of nuclear grade natural uranium and to Mr. S.M. Sathe of AFD, BARC for help in metallography of uranium. Authors thank Dr. J.B. Singh for measurement of U texture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta K. Chakravartty.

Additional information

Manuscript submitted December 6, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, R., Behera, A.N., Chakravartty, J.K. et al. Hot Deformation of Uranium in the α, β, and γ Phases. Metall Mater Trans A 46, 251–259 (2015). https://doi.org/10.1007/s11661-014-2624-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2624-3

Keywords

Navigation