Skip to main content
Log in

Influence of Subsurface Structure on the Linear Reciprocating Sliding Wear Behavior of Steels with Different Microstructures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work investigates the influence of subsurface microstructure on the linear reciprocating sliding wear behavior of a number of steels with ferrite-pearlitic, pearlitic, bainitic, and martensitic microstructures under dry unlubricated condition. The change in the underlying microstructure with depth from worn-out surface of steel sample intimately relates to the associated hardness variation and wear volume. The present paper is not about comparison of wear resistance of steels with different structures; rather it is on mutual influence of wear and substructure for individual microstructure. Inherent toughness of the matrix and ability of microstructural components to get deformed under the reciprocating action of the ball decide the wear resistance of the steels. Bainite has good amount of stability to plastic deformation. Ferrite shows severe banding due to wear action. Work hardening renders pearlite to be wear resistant. Temperature rise and associated tempering of martensite are observed during wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. L. Hurricks: Wear, 1973, vol. 26, pp. 285–304.

    Article  Google Scholar 

  2. A. Aglan Heshmat, Fateh Mahmoo: J Mechanics Mater. Struct., 2007, vol. 2, pp. 335-46.

    Article  Google Scholar 

  3. Yu. Ivanisenko, W Lojkowski, RZ Valiev, HJ Fecht: Acta Mater., 2003, vol. 51, pp. 5555-70.

    Article  Google Scholar 

  4. D. A. Rigney, W.A. Glaeser: Wear, 1978, vol. 46, pp. 241-50.

    Article  Google Scholar 

  5. A. Matsuzaki, H.K.D.H. Bhadeshia and H. Harada, Acta Metall. Mater., 1994, vol. 42, pp. 1081-1090.

    Article  Google Scholar 

  6. Yu. Ivanisenko, W. Lojkowski, R. Z. Valiev, H. -J. Fetch, Acta mater., 2003, vol. 51, pp. 5555-5570.

    Article  Google Scholar 

  7. H.K.D.H. Bhadeshia: in Possible Effects of Stress on Steel Weld Microstructures, H. Cerjak and H.K.D.H. Bhadeshia, eds., Institute of Materials, London, 1995, pp. 71–118.

  8. Young-Ho Lee and In-Sup Kim, Wear, 2002, vol. 253, pp. 438-447.

    Article  Google Scholar 

  9. D. A. Rigney, R. Divakar, S. M. Kuo, Scripta Metall. Mater., 1992, vol. 27, pp. 975–980.

    Article  Google Scholar 

  10. M. A. Moore, R.M. Douthwaite, Metall. Trans. A, 1976, vol. 7, pp. 1833–1839.

    Article  Google Scholar 

  11. S. Y. Tarassov, A.V. Kolubaev, Wear, 1999, vol. 231, pp. 228–234.

    Article  Google Scholar 

  12. S. M. Shariff, T. K. Pal, G. Padmanabham and S. V. Joshi, J. Tribo., 2011, vol. 133, pp. 1-9.

    Article  Google Scholar 

  13. P. Clayton and X. Su, Wear, 1996, vol. 200, pp. 63-73.

    Article  Google Scholar 

  14. Kapoor, F. J. Franklin, S. K. Wong, M. Ishida, Wear, 2002, vol. 253, pp. 257-264.

    Article  Google Scholar 

  15. S Basavarajappa, G Chandramohan, A. Mahadevan, M. Thangavelu, R. Subramanian, P. Gopalkrishnan, Wear, 2007, vol. 262, pp. 1007–1012.

    Article  Google Scholar 

  16. K. L. Jhonson, J. Mech. Engg. Sci., 1989, vol. 203, pp. 151-163.

    Article  Google Scholar 

  17. K. M. Lee, A. Polycarpou, Wear, 2005, vol. 259, pp. 391-99.

    Article  Google Scholar 

  18. P. H. Shipway, S. J. Wood, A. H. Dent: Wear, 1997, vols. 203-204, pp. 196-205.

    Article  Google Scholar 

  19. K. Madler, A. Zoll, R. Heyder, and M. Brehmer: OPTIKON, A composite project funded by the German Transport Ministry, 1998–2001.

  20. J. E. Garnham, J. H. Baynon: Wear, 1992, vol. 157, pp. 81-109.

    Article  Google Scholar 

  21. P. Clayton, K. J. Sawley, P. J. Bolton, G.M. Pell: Wear, 1987, vol. 120, pp. 199-220.

    Article  Google Scholar 

  22. V. I. Semenov, L. Sh. Shuster, S. J. Huang, P. Ch. Lin: J. Friction Wear, 2011, vol. 32, pp. 205-11.

    Article  Google Scholar 

  23. S. B. Wesley, H. S. Goyal, A. P. Harsha: J. Eng. Tribology, 2012, vol. 226, pp. 163-73.

    Google Scholar 

  24. R. Tyagi, S. K. Nath, S. Ray: Metall. Mater. Trans. A A, 2002, vol. 33, pp. 3479-88.

    Article  Google Scholar 

  25. J. Larsen-Badse: Trans AIME, 1966, vol. 236, pp. 1461-66.

    Google Scholar 

  26. D. J. Gaul, D. J. Duquette: Metall. Trans. A, 1980, vol. 11, pp. 1581-88.

    Article  Google Scholar 

  27. N. Jin, P. Clayton: Wear, 1997, vol. 202, pp. 202-07.

    Article  Google Scholar 

  28. W. R. Tyfour, J. H. Beynon, A. Kapoor: Wear, 1995, vol. 180, pp. 79-89.

    Article  Google Scholar 

  29. J. Kalousek, D. M. Fegredo, E.E. Laufer: Wear, 1985, vol. 105, pp. 199-222.

    Article  Google Scholar 

  30. P. Clayton, R. Devanathan, N. Jin, R.K. Steele: Rail Quality and Maintenance for Modern Railway Operation, Kluwer Academic Publishers, Netherlands, 1993, pp. 41–51.

    Book  Google Scholar 

  31. Indian Railway Standard Specification for Flat Bottom Railway Rails, Research Design and Standards Organization, Lucknow. Serial no.T-12-96.

  32. H.K.D.H. Bhadeshia, Teaching Materials, http://www.msm.cam.ac.uk/phase-trans/teaching.html.

  33. K.W. Andrews: JISI, 1965, vol. 203, pp. 721-23.

    Google Scholar 

  34. Z. Zhao, C. Cheng, Y. Liu, D.O. Northwood: J. Mater. Sci., 2001, vol. 36, pp. 5045-56.

    Article  Google Scholar 

  35. B. Basu, J. Sarkar, and R. Mishra: Metall. Mater. Trans. A, 2009, vol. 40, pp. 472-80.

    Article  Google Scholar 

  36. S. Sharma, S. Sangal, K. Mondal: Wear, 2013, vol. 300, 82-89.

    Article  Google Scholar 

  37. C. Garcia-Mateo, F. G. Caballero, M. K. Miller, J. A. Jimenez: J. Mater. Sci., 2012, vol. 47, pp. 1004-10.

    Article  Google Scholar 

  38. A. Misra, S. Sharma, S. Sangal, A. Upadhyaya, K. Mondal: Mater. Sci. Eng. A, 2012, vol. 558, pp. 725-29.

    Article  Google Scholar 

  39. G. Krauss: Mater. Sci. Eng. A, 1999, vols. 273-275, pp. 40-57.

    Article  Google Scholar 

  40. S. Sharma, S. Sangal, K. Mondal: Metall. Mater. Trans. A, 2011. Vol. 42, pp. 3921-33.

    Article  Google Scholar 

  41. F. G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown: Mater. Sci. Tech.,2001, vol. 17, pp. 517-22.

    Article  Google Scholar 

  42. J. F. Archard, Wear Handbook, ASME, New York (1980).

    Google Scholar 

  43. P. J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon press, London, 1996.

    Google Scholar 

  44. M. Gensamer, E. B. Pearsall, W. S. Pellini, J. R. Low, Metallogrph. Microstruct. Anall., 2012, vol. 1, pp. 171-89.

    Article  Google Scholar 

  45. H.I. Yokoyam, Shin JiMitao, SadahIro Yamamo, Yuzuru Kataoka, Toru Sugiyama: NKK Technical Rev.,2001, vol. 84, pp. 44-51.

    Google Scholar 

  46. H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels Microstructure and Properties, Butterworth-Heinemann publishers, Oxford, 3rd edition, 2006.

    Google Scholar 

  47. A. Barbacki: J. Mater. Proc. Tech.,1995, vol. 53, pp. 57-63.

    Article  Google Scholar 

  48. E. Hornbogen: Wear, 1975, vol. 33, pp. 251-59.

    Article  Google Scholar 

  49. S. Kapoor, R. Liu, X.J. Wu, M. X. Yao: World Academy of Science, Engineering and Technology, 2012, vol. 67, pp. 964-73.

    Google Scholar 

  50. S. C. Lim and M. F. Ashby: Acta Metall., 1987, vol. 35, pp. 1-24.

    Article  Google Scholar 

  51. J. F. Archard: Wear, 1958, vol. 2, pp. 438-55.

    Article  Google Scholar 

  52. M. F. Ashby, J. Abulawi, H.S. Kong: Tribo. Trans., 1991, vol. 34, pp. 577-87.

    Article  Google Scholar 

  53. I. M. Hutchings, Friction and Wear of Engineering Materials, Butterworth Heinemann, Oxford 1992.

    Google Scholar 

  54. Rabinowicz, Friction and Wear of Materials, Wiley, New York, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Additional information

Manuscript submitted February 3, 2014.

Appendix

Appendix

(a) Calculation of T b , the bulk surface temperature[51, 52]

$$ \left( {T_{b} - T_{0} } \right)\frac{{k_{1} }}{{l_{1b} }} + \left( {T_{b} - T_{0} } \right)\frac{{k_{2} }}{{l_{2b} }} = \frac{\mu Fv}{{A_{n} }} $$

where A n is the apparent area of contact given by, \( A_{n} = \pi r_{0}^{2} \), as indicated in Figure 11. μ is the coefficient of friction and v is the sliding velocity of ball-on-disk.

After substituting the value of the given parameters, the value of T b is obtained to be 343 K (70 °C).

(b) Calculation of other parameters involved in Eq. [9]

$$ T^{\prime}_{b} = T_{b} - \frac{{A_{r} }}{{A_{n} }}\left( {T_{b} - T_{0} } \right) $$
$$ F_{s} = \frac{{H_{0} A_{n} }}{{\left( {1 + 12\mu^{2} } \right)^{1/2} }} $$
$$ l_{1f} = l_{2f} = \frac{{\pi^{1/2} r_{j} }}{2} $$
$$ r_{j} = r_{0} \left\{ {\left[ {1 - \frac{F}{{F_{s} }}} \right]\left[ {\frac{{r_{0} }}{{r_{a} }}} \right]^{2} + 1} \right\}^{ - 1/2} $$

The various parameters are defined as r j is contact junction radius, F s is seizure load, load at which A r becomes equal to A n , l 1f and l 2f is effective heat diffusion distances in ball and flat specimen, respectively, for flash heating, \( T^{\prime}_{b} \) is sink temperature for heat flow from an asperity, l 1b is effective linear heat diffusion distance (adjustable in tribometer) for ball, bulk heating, l 2b is effective heat diffusion distances for flat specimen, bulk heating, k 1 and k 2 is thermal conductivity of ball and flat specimen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sangal, S. & Mondal, K. Influence of Subsurface Structure on the Linear Reciprocating Sliding Wear Behavior of Steels with Different Microstructures. Metall Mater Trans A 45, 6088–6102 (2014). https://doi.org/10.1007/s11661-014-2555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2555-z

Keywords

Navigation