Skip to main content
Log in

Durability to Electromigration of an Annealing-Twinned Ag-4Pd Alloy Wire Under Current Stressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Ag-4Pd binary alloy wire has been produced as an alternative to a previously developed Ag-8Au-3Pd ternary alloy wire to meet requirements for high electrical conductivity and low cost. The electrical resistivity of this Ag-4Pd bonding wire, manufactured with a conventional method, is 3.7 μΩ cm, close to the values of traditional 3N Au wire (3.5 μΩ cm) and Pd-coated Cu wire (1.8 μΩ cm). To further improve the performance of this bonding wire, a large amount of annealing twins were introduced in this Ag-4Pd alloy wire through an innovative concept of sequential drawing and multiple annealing processes. The resulting electrical resistivity of this annealing-twinned Ag-4Pd wire is 3.5 μΩ cm. In contrast to the apparent increase in grain size in the conventional Ag-4Pd wire under electrical stressing with a current density of 1.23 × 105 A/cm2 for various times, the grains in this annealing-twinned wire grow much more slowly. The breaking load and elongation of this annealing-twinned Ag-4Pd wire are also higher than those of conventional wire. Furthermore, annealing twins increase the durability to electromigration of this Ag-4Pd wire under electrical stressing with various current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.E. Schwartz, Elektrolytische Wanderung in flüssigen und festen Metallen, Leipzig:J A Barth, 1940.

    Google Scholar 

  2. Y.C. Chan and D.Yang, Progress in Mater. Sci., 2010, vol.55, pp. 428–75.

    Google Scholar 

  3. C.Y. Liu, C. Chen, K.N. Tu (2000) J. Appl. Phys. 88:5703–09.

    Article  Google Scholar 

  4. H.J. Lin, C.Chen, and T.H. Chuang, J. Alloys and Compounds, 2009, vol. 487, pp. 458–65.

    Article  Google Scholar 

  5. P.K. Tse and T.M. Lach: Proc. 45th IEEE ECTC, Las Vegas, Nevada, 1995, pp. 900–05.

  6. L.De Schepper, W.De Ceuninck, G. Leken, L. Stals, B. Vanhecke, J. Roggen, and L. Tielemans, Qual. Reliab. Eng. Int.1994, Vol.10, pp. 15–26.

    Article  Google Scholar 

  7. B. Krabbenborg, Micro-electronsReliability, Vol.39,1999, pp.77–88.

    Article  Google Scholar 

  8. H.T. Orchard and A. L. Greer, J. Electron. Mater. 35,2006, pp.1961–68.

    Article  Google Scholar 

  9. E. Zin, N. Michael, S.H. Kang, K.H. Oh, U. Chul, J.S. Cho, J.T. Moon, and C.U. Kim: Proc. 59th Electron. Comp. and Techno. Conf., 2009, pp. 943–47.

  10. T.C. Wei and A.R. Daud, J. Electron. Packag., 2003, Vol. 125, pp. 617–20.

    Article  Google Scholar 

  11. A. Kamijo and H. Igarashi: Proc. 35th IEEE Electron. Compon. Conf., Washington, DC, 1985, p. 91.

  12. J.Lin and J. Chuang, J. Electrochem. Soc., 1997, Vol.144, pp.1652.

    Article  Google Scholar 

  13. J.D. Lee: Taiwan Patent I 323199, 2010, and US Patent 8101123B2, 2012.

  14. J.D. Lee, H.H. Tsai, and T.H. Chuang: Taiwan Patent I 384082 (2013) and Korea Patent 10-1328863 (2013).

  15. R.W. Cahn: Physical Metallurgy, 2nd ed. North Holland, Amsterdam, 1970, pp. 1184.

    Google Scholar 

  16. S. Mandal, A.K. Bhaduri, V.S. Sarma, Mater. Sci. Eng., 2009, 515:134–40.

    Article  Google Scholar 

  17. N.Souai, N.Bozzolo, L.Naze, Y.Chastel, R. Loge, Scripta Mater., 2010, Vol. 62, pp. 851–54.

    Article  Google Scholar 

  18. S. Lee, Y.B. Chun, J.W. Hua, S.K. Hwang, Mater. Sci. Eng. A, 2003, 363:307–15.

    Article  Google Scholar 

  19. L. Lu, Y. Shen, X.Chen, L.Qian, K.Lu, Science, 2004, Vol.304, pp.422–26.

    Article  Google Scholar 

  20. L. Lu, X. Chen, X.Huang, K.Lu, Science, 2009, Vol.323, pp.607–10.

    Article  Google Scholar 

  21. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Science, 2008, Vol.321, pp.1066–69.

    Article  Google Scholar 

  22. T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang, J.D. Lee, and H. H. Tsai, Scripta Mater., 2012, vol. 67, pp. 605–08.

    Article  Google Scholar 

  23. T.H. Chuang, C.H. Tsai, H.C. Wang, C.C. Chang, C.H. Chuang, J.D. Lee, and H.H. Tsai, J. Electron. Mater., 2012, vol. 41, pp. 3215–22.

    Article  Google Scholar 

  24. T.H. Chuang, H.C. Wang, C.H. Chuang, J.D. Lee, and H.H. Tsai, J. Electron. Mater., 2013, vol.42, pp. 545–51.

    Article  Google Scholar 

Download references

Acknowledgments

This study was sponsored by a cooperative program of the National Science Council and Wire Technology, Taiwan, under Grant No. NSC-102-2622-E002-019-CC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Han Chuang.

Additional information

Manuscript submitted May 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, TH., Lin, HJ., Chuang, CH. et al. Durability to Electromigration of an Annealing-Twinned Ag-4Pd Alloy Wire Under Current Stressing. Metall Mater Trans A 45, 5574–5583 (2014). https://doi.org/10.1007/s11661-014-2538-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2538-0

Keywords

Navigation