Skip to main content
Log in

Evolution of the Laves Phase in Ferritic Heat-Resistant Steels During Long-term Annealing and its Influence on the High-Temperature Strength

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Heat-resistant ferritic steels containing Laves phase precipitates were designed supported by thermodynamic modeling. High-temperature compression tests at 1173.15 K (900 °C) and a detailed characterization of the microstructural evolution during annealing at 1173.15 K (900 °C) were carried out to investigate the effect of Laves phase formation on the high-temperature strength. Due to the addition of W/Mo and/or Nb, the high-temperature strength of the newly designed alloys is significantly higher than that of the reference steels. However, the high-temperature strength of all investigated steels decreases slightly as the annealing time is increased up to 1440 hours. To determine the influence of Laves phase formation and coarsening on the high-temperature strength during long-term annealing, the precipitates were extracted from the ferritic matrix in different annealing states. The phases in the powder residue were determined by XRD, and the chemical composition of the Laves phase in dependence of the annealing time was analyzed by EDS measurements. During annealing, steel Fe18CrMoW forms Nb(C,N), Ti(C,N), Laves phase (Fe2Nb) and Fe3Nb3C, whereas alloy Fe19CrWAl forms Nb(C,N), Ti(C,N), and Laves phase (Fe2Nb). The Laves phase within the alloys Fe18CrMoW and Fe19CrWAl differs in its morphology as well as its chemical composition. The Laves phase in steel Fe18CrMoW attains its chemical equilibrium after 192 hours, whereas alloy Fe19CrWAl required 24 hours. Overall, the formation of the Laves phase prevents significant grain growth during high-temperature annealing, thus preserving the high-temperature strength over a long time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N. Fujita, K. Ohmura, M. Kikuchi, T. Suzuki, S. Funaki and I. Hiroshige: Scripta Materialia, 1996, vol. 35, no. 6 pp. 705–10.

    Article  Google Scholar 

  2. W. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser: Materials at High Temperatures, 2003, vol. 20, no. 2 pp. 115–27.

    Google Scholar 

  3. T. J. Nichol, A. Datta and G. Aggen: Metallurgical Transactions A, 1980, vol. 11, no. 4 pp. 573–85.

    Article  Google Scholar 

  4. A. van Zwieten and J. Bulloch: International Journal of Pressure Vessels and Piping, 1993, vol. 56, no. 1 pp. 1–31.

    Article  Google Scholar 

  5. H. Berns and W. Theisen: Ferrous materials: Steel and cast iron. Springer, Berlin and London, 2008.

    Google Scholar 

  6. Y. Inoue and M. Kikuchi: Nippon Steel Technical Report, 2003, pp. 62–69.

  7. F. Chassagne, J. Mithieux and J. Schmitt: Steel Research International, 2006, vol. 77, no. 9-10 pp. 680–85.

    Google Scholar 

  8. P. O. Santacreu, O. Cleizergues, C. Simon and P. Duroux: Revue De Metallurgie-Cahiers D Informations Techniques, 2004, vol. 101, no. 7-8 pp. 615–20.

    Google Scholar 

  9. F. Abe: Metallurgical and Materials Transactions A, 2005, vol. 36A, pp. 321–32.

    Article  Google Scholar 

  10. Q. Li: Metallurgical and Materials Transactions A, 2006, vol. 37A, pp. 89–97.

    Article  Google Scholar 

  11. A. Miyazaki, K. Takao and O. Furukimi: ISIJ International, 2002, vol. 42, no. 8 pp. 916–20.

    Article  Google Scholar 

  12. G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee and K. S. Lee: Materials Science and Engineering: A, 2005, vol. 396, no. 1-2 pp. 159–65.

    Article  Google Scholar 

  13. H. L. Lukas, S. G. Fries and B. Sundman: Computational thermodynamics: The CALPHAD method. Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  14. Thermo-Calc Software: Thermo-CalcUser’s GuideVersion S. Stockholm and Schweden, 2008.

  15. T. Sawatani, S. Minamino and H. Morikawa: Transaction of Iron and Steel Institute of Japan, 1982, vol. 22, no. 3 pp. 172–80.

    Article  Google Scholar 

  16. H. Kutsumi, A. Chino and Y. Ishibashi: Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 1992, vol. 78, no. 4 pp. 594–600.

    Google Scholar 

  17. J. Froitzheim, G. Meier, L. Niewolak, P. Ennis, H. Hattendorf, L. Singheiser and W. Quadakkers: Journal of Power Sources, 2008, vol. 178, no. 1 pp. 163–73.

    Article  Google Scholar 

  18. M. Sello and W. Stumpf: Materials Science and Engineering: A, 2010, vol. 527, no. 20 pp. 5194–202.

    Article  Google Scholar 

  19. V. Knežević, J. Balun, G. Sauthoff, G. Inden and A. Schneider: Materials Science and Engineering: A, 2008, vol. 477, no. 1-2 pp. 334–43.

    Google Scholar 

  20. N. Nabiran, S. Weber and W. Theisen: Steel Research International, 2012, vol. 83, no. 8 pp. 758–65.

    Article  Google Scholar 

  21. W. Gordon and A. van Bennekom: Mater. Sci. Technol., 1996, vol. 12 (2) pp. 126–31.

  22. D. Rojas, J. Garcia, O. Prat, C. Carrasco, G. Sauthoff and A. Kaysser-Pyzalla: Materials Science and Engineering: A, 2010, vol. 527, no. 16-17 pp. 3864–76.

    Article  Google Scholar 

  23. Y. Kato, A. Miyazaki and T. Ujiro: JFE Steel, JP, vol. 2008, no. 20 pp. 28–32.

    Google Scholar 

  24. B. Kuhn, C. A. Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser and W. Quadakkers: Materials Science and Engineering: A, 2011, vol. 528, no. 18 pp. 5888–99.

    Article  Google Scholar 

  25. Y. Chiu and C. Lin: Journal of Power Sources, 2012, vol. 198 pp. 149–57.

    Article  Google Scholar 

  26. P. W. Voorhees: Journal of Statistical Physics, 1985, vol. 38, no. 1-2 pp. 231–52.

    Article  Google Scholar 

  27. N. Fujita, K. Ohmura and A. Yamamoto: Materials Science and Engineering: A, 2003, vol. 351, no. 1-2 pp. 272–81.

    Article  Google Scholar 

  28. G. Gottstein: Physical foundations of material science. Springer, Berlin, 2004.

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the Bundesministerium für Bildung und Forschung (BMBF) for the project “Entwicklung von Höchstleistungswerkstoffen für Hochtemperatur-Wärmetauscher und PKW-Abgasanlagen” (“Development of high-performance materials for high-temperature heat carriers and automotive exhaust systems”) under Contract number 03X3520G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilofar Nabiran.

Additional information

Manuscript submitted September 9, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabiran, N., Klein, S., Weber, S. et al. Evolution of the Laves Phase in Ferritic Heat-Resistant Steels During Long-term Annealing and its Influence on the High-Temperature Strength. Metall Mater Trans A 46, 102–114 (2015). https://doi.org/10.1007/s11661-014-2505-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2505-9

Keywords

Navigation