Skip to main content
Log in

Solidification of Highly Undercooled Hypereutectic Ni-Ni3B Alloy Melt

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The solidification of undercooled Ni-4.5 wt pct B alloy melt was investigated by using the glass fluxing technique. The alloy melt was undercooled up to ΔT p ~ 245 K (245 °C), where a mixture of α-Ni dendrite, Ni3B dendrite, rod eutectic, and precipitates was obtained. If ΔT p < 175 K ± 10 K (175 °C ± 10 °C), the solidification pathway was found as primary transformation and eutectic transformation (L → Ni3B and L → Ni/Ni3B); if ΔT p ≥ 175 K ± 10 K (175 °C ± 10 °C), the pathway was found as metastable eutectic transformation, metastable phase decomposition, and residual liquid solidification (L → Ni/Ni23B6, Ni23B6 → Ni/Ni3B, and Lr → Ni/Ni3B). A high-speed video system was adopted to observe the solidification front of each transformation. It showed that for residual liquid solidification, the solidification front velocity is the same magnitude as that for eutectic transformation, but is an order of magnitude larger than for metastable eutectic transformation, which confirms the reaction as Lr → Ni/Ni3B; it also showed that this velocity decreases with increasing ΔT r, which can be explained by reduction of the residual liquid fraction and decrease of Ni23B6 decomposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Koseki: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1994.

  2. K. Nagashio, K. Kuribayashi, and Y. Takamura: Acta Mater., 2000, vol. 48, pp. 3049–57.

  3. O. Funke, G. Phanikumar, P.K. Galenko, L. Chernova, S. Reutzel, M. Kolbe, and D.M. Herlach: J. Cryst. Growth, 2006, vol. 297, pp. 211–22.

    Article  Google Scholar 

  4. B.T. Bassler, W.H. Hofmeister, R.J. Bayuzick, R. Gorenflo, T. Bergman, and L. Stockum: Rev. Sci. Instrum., 1992, vol. 63, pp. 3466–71.

    Article  Google Scholar 

  5. K. Biswas, G. Phanikumar, K. Chattopadhyay, T. Volkmann, O. Funke, D. Holland-Moritz, and D.M. Herlach: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 464–67.

    Article  Google Scholar 

  6. Y.Z. Chen, G.C. Yang, F. Liu, N. Liu, H. Xie, and Y.H. Zhou: J. Cryst. Growth, 2005, vol. 282, pp. 490–97.

    Article  Google Scholar 

  7. B. Wei, D.M. Herlach, B. Feuerbacher, and F. Sommer: Acta Metall. Mater., 1993, vol. 41, pp. 1801–09.

    Article  Google Scholar 

  8. J.F. Li, X.L. Li, L. Liu, and S.Y. Lu: J. Mater. Res., 2008, vol. 23, pp. 2139–47.

    Article  Google Scholar 

  9. Y.P. Lu, X. Lin, G.C. Yang, J.J. Li, and Y.H. Zhou: J. Appl. Phys., 2008, vol. 104, p. 013535.

    Article  Google Scholar 

  10. C. Yang, F. Liu, G. Yang, Y. Chen, N. Liu, and Y. Zhou: J. Alloys Compd., 2007, vol. 441, pp. 101–06.

    Article  Google Scholar 

  11. M. Leonhardt, W. Loser, and H.G. Lindenkreuz: Acta Mater., 1999, vol. 47, pp. 2961–68.

    Article  Google Scholar 

  12. N.S. Masoud, R.K. Ali, N.S. Mahboobeh, M. Roohallah, and N. Saber: J. Therm. Anal. Calorim., 2012, vol. 107, pp. 265–69.

    Article  Google Scholar 

  13. J.F. Xu, F. Liu, and B. Dang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1401–08.

    Article  Google Scholar 

  14. J. Ajao, S. Hamar-Thibault, and J. Thibault-Desseaux: J. Mater. Sci., 1989, vol. 24, pp. 3647–59.

    Article  Google Scholar 

  15. J. Ajao and S. Hamar-Thibault: J. Mater. Sci., 1988, vol. 23, pp. 1112–25.

    Article  Google Scholar 

  16. M. Baricco, E. Ferrari, and L. Battezzati: Mater. Res. Soc. Symp. Proc., 1996, vol. 398, pp. 81–86.

    Article  Google Scholar 

  17. L. Battezzati, C. Antonione, and M. Baricco: J. Alloys Compd., 1997, vol. 247, pp. 164–71.

    Article  Google Scholar 

  18. W.J. Boettinger, S.R. Coriell, and R. Trivedi: in Rapid Solidification Processing: Principles and Technologies, R. Mehrabian and P.A. Parrish, eds., Claitor’s Publishing, Baton Rouge, LA, 1985, p. 13.

  19. J.F. Xu, F. Liu, and D. Zhang: J. Mater. Res., 2013, vol. 28, pp. 1891–1902.

    Article  Google Scholar 

  20. M. Li and K. Kuribayashi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2999–3008.

    Article  Google Scholar 

  21. P.R. Ohodnicki, J.N.C. Cates, D.E. Laughlin, M.E. McHenry, and M. Widom: Phys. Rev. B, 2008, vol. 78, p. 144414.

    Article  Google Scholar 

  22. S. Diplas, J. Lehrmann, S. Jørgensen, T. Våland, and J. Taftø: Phil. Mag., 2005, vol. 85, pp. 981–97.

    Article  Google Scholar 

  23. K.A. Jackson and J.D. Hunt: Trans. Metall. Soc., 1966, vol. 236, pp. 1129–42.

    Google Scholar 

  24. R. Trivedi, P. Magnin, and W. Kurz: Acta Metall., 1987, vol. 35, pp. 971–79.

    Article  Google Scholar 

  25. J.F. Li and Y.H. Zhou: Acta Mater., 2005, vol. 53, pp. 2351–59.

    Article  Google Scholar 

  26. D. Turnbull: J. Chem. Phys., 1952, vol. 20, pp. 411–24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the China National Funds for Distinguished Young Scientists (Grant No. 51125002), the National Basic Research Program of China (973 Program, Nos. 2011CB610403 and 2011CB632904), the Natural Science Foundation of China (Nos. 51101122, 51134011, 51171136, 51071127, and 51071115), the Free Research Fund of State Key Laboratory of Solidification Processing (No. 66-QP-2010), the 111 project (No. B08040), the President Fund of Xi’an Technological University (Grant No. XAGDXJJ1307), and the Fund of Shaanxi Province Thin Film Technology and Optical Test Open Key Laboratory (Grant No. ZSKJ201403). J.F. Xu thanks C.Y. Hu, J.W. Xu, X.L. Xu, and S.B. Li for their help with this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu or Junfeng Xu.

Additional information

Manuscript submitted October 4, 2013.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Xu, J., Zhang, D. et al. Solidification of Highly Undercooled Hypereutectic Ni-Ni3B Alloy Melt. Metall Mater Trans A 45, 4810–4819 (2014). https://doi.org/10.1007/s11661-014-2460-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2460-5

Keywords

Navigation